
ptg

Zoe Mickley Gillenwater

3
Stunning

CSS
A PROJECT-BASED GUIDE

TO THE LATEST IN CSS

Stunning CSS3: A project-based guide to the latest in CSS
Zoe Mickley Gillenwater

New Riders
1249 Eighth Street
Berkeley, CA 94710
(510) 524-2178
Fax: (510) 524-2221

Find us on the Web at www newriders.com
To report errors, please send a note to errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education
Copyright © 2011 by Zoe Gillenwater

Acquisitions Editor: Wendy Sharp
Production Editor: Hilal Sala
Project/Copy Editor: Wendy Katz
Technical Editor: Chris Mills
Cover design: Charlene Charles-Will
Interior design: Mimi Heft, Charlene Charles-Will
Compositor: Danielle Foster
Indexer: Emily Glossbrenner

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. For information on getting permission for reprints and
excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor New Riders
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

Trademarks
Acrobat, Dreamweaver, Fireworks, and Photoshop are all trademarks or registered trade-
marks of Adobe Systems, Inc. Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and Peachpit was aware of a trademark claim, the designations appear as
requested by the owner of the trademark. All other product names and services identified
throughout this book are used in editorial fashion only and for the benefit of such compa-
nies with no intention of infringement of the trademark. No such use, or the use of any trade
name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-72213-3
ISBN 10: 0-321-72213-2

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com

To Mr. Butkus,
for teaching me HTML and Photoshop 4

at Downers Grove North High School

This page intentionally left blank

ACKNOWLEDGMENTS v

Acknowledgments

I want to thank everyone whose assistance has made writing this book
possible and painless.

Immense thanks go to my copy editor Wendy Katz for ensuring my
writing was clear, precise, and polished. It was wonderful to work
with you again. Thank you for your guidance, advice, and revisions,
particularly your continual correction of my placement of the word
“only.” Someday I’ll learn its mysteries.

My writing also owes a lot to the tremendous work of Chris Mills,
my technical editor. Thank you for painstakingly checking my code,
offering helpful suggestions, answering my technical questions, and
pointing out areas to correct or clarify.

I’m grateful to my acquisitions editor at Peachpit, Wendy Sharp,
for making the book a reality. Thanks also to all the other staff at
Peachpit/New Riders who have been involved in producing this book.
I don’t know your names, but I know how hard you’ve worked on this
and how talented you are, and I’m grateful.

Thanks to David Fugate, my literary agent, for his guidance and advocacy.

There are many people who weren’t directly involved in the writing
of the book but to whom I owe so much of my knowledge. Thanks to
Zoltan Hawryluk, Paul Irish, and Richard Fink for answering my tech-
nical questions and providing great tools for working with CSS3. I’m
grateful to my high school teacher Mr. Butkus for starting me down
this path by teaching me HTML and Photoshop 4. Thanks also to my
former boss Lamar Heyward for putting the crazy idea of using CSS
for all style and layout into my head. I’ve also learned so much from
the work of John Allsopp, Dan Cederholm, Andy Clarke, Chris Coyier,
Roger Johansson, Eric Meyer, Trent Walton, Estelle Weyl, and many
others. Thanks for being so brilliant and sharing it with the rest of us.

Finally, thanks to my fantastic family. Cary, I’m so thankful for your lov-
ing support through this second book-writing expedition. You’ve been
incredibly patient with my long hours and listening to me complain
about browser bugs and confusing W3C specs, and you’ve taken such
good care of Asha while I’ve toiled away. Mom, Dad, and Faith, you also
watched Asha a good bit during this process, and I’m very grateful for
your help. Asha, thanks also to you for letting Mama work and coming
to visit me with hug breaks every once in a while. I love you all.

This page intentionally left blank

TABLE OF CONTENTS vii

Table of Contents

Introduction . xiii

CHAPTER 1 The CSS3 Lowdown 1

What is CSS3? . 2

Overview of What’s New 2

Where CSS3 Stands 4

Use CSS3 Now . 5

The State of Browser Support 6

Browser Market Share. 7

How the Major Players Stack Up 8

Progressive Enhancement 11

Advantages . 11

Let Me Put it This Way... 13

Benefits of CSS3 . 15

Reduced Development and Maintenance
Time . 16

Increased Page Performance 16

Better Search Engine Placement 18

Increased Usability and Accessibility 19

Staying at the Front of the Pack 19

Case Study: The Highway Safety Research
Center . 19

Before CSS3 . 20

After CSS3 . .22

TABLE OF CONTENTSviii

Using CSS3 Wisely . 25

Browser Prefixes .25

Dealing with Non-supporting Browsers 30

Filtering IE with Conditional Comments 36

Dealing with Unsupportive Clients or Bosses . . . 41

Don’t Tell Them Everything 41

Educate Them About Progressive Enhancement
Up Front . 42

Manage Expectations from Design Mockups . 43

CHAPTER 2 Speech Bubbles 47

The Base Page . 48

Corralling Long Text. 49

Graphic Effects Sans Graphics 51

Rounding the Corners 51

Adding the Bubble’s Tail55

Semitransparent Backgrounds with RGBA
or HSLA . 62

Image-free Gradients72

Image-free Drop Shadows 81

Image-free Text Shadows 85

Transforming the Avatars 89

What are Transforms? 89

Rotating the Avatars. 92

The Finished Page . 96

TABLE OF CONTENTS ix

CHAPTER 3 Notebook Paper 99

The Base Page . 100

Beyond the Basic Background 101

Scaling the Background Image 101

Multiple Background Images on
One Element . 109

Adding a Graphic Border. 114

Adding a Drop Shadow. 125

Embedding Unique Fonts 126

What is @font-face? 127

Choosing Acceptable Fonts 128

Browser Support. 134

Converting Fonts. 135

Using @font-face 137

The Finished Page .146

CHAPTER 4 Styling Images and Links by Type 149

The Base Page .150

What are Attribute Selectors?. 151

Indicating File Types with Dynamically Added
Icons . 153

Alternative Icon Ideas 156

Fixing IE 6 . 157

Styling Full-size Photos and Thumbnails
Differently . 160

The Trouble with Classes 160

Using Attribute Selectors to Target by Type . . 164

The Finished Page .165

TABLE OF CONTENTSx

CHAPTER 5 Improving Efficiency Using Pseudo-classes 167

Targeting Specific Elements Without Using IDs
or Classes .168

New Structural Pseudo-classes 169

Back to the Speech Bubbles: Alternating
Colors . 171

Back to the Photos: Random Rotation 176

Dynamically Highlighting Page Sections 180

The :target Pseudo-class 181

Adding the Table of Contents. 182

Changing Background Color on the
Jumped-to Section 188

Animating the Change with Pure CSS 191

CHAPTER 6 Different Screen Size, Different Design 205

The Base Page . 206

What are Media Queries? 208

Changing the Layout for Large Screens 209

From Horizontal Nav Bar to Vertical Menu . . . 213

Multi-column Text 214

Changing the Layout for Small Screens 220

Changing the Layout for Mobile Devices 226

What is Device Width? 227

The Third Media Query. 228

Improving the Look on High-resolution
Displays . 233

The Viewport meta Tag 235

Workarounds for Non-supporting Browsers. . . 240

The Finished Page .241

TABLE OF CONTENTS xi

CHAPTER 7 Flexing Your Layout Muscles 243

Changes on the Horizon 244

Creating Multi-column Layouts Without
Floats or Positioning 245

Making Blocks Flex. 248

Adding Columns. 253

Reordering Columns 255

Equal-height Columns 258

Vertical and Horizontal Centering 261

Reality Check: What Works Now 266

Flexible Form Layout268

Sticky Footers. . 272

Alternatives to the Flexible Box Model 277

The box-sizing Property 277

Future Layout Systems284

APPENDIX A Browser Support 287

Conclusion . 289

Index . .291

Credits . .301

This page intentionally left blank

INTRODUCTION xiii

Introduction

CSS3, the newest version of the style sheet language of the web, is less
about creating new effects and more about accomplishing the beauti-
ful web design effects you’re familiar with in fantastic new ways—ways
that are more efficient and produce more usable and flexible results
than the techniques we’ve been using for the last decade.

CSS3 is still changing and evolving, as are browsers to support it and
web designers to figure out how best to use it. CSS3 can create some
stunningly beautiful and cool effects, as you’ll see throughout this
book. But if these effects aren’t practical for real-world sites right
now, what’s the point? In this book, I’ll focus on teaching you the
cutting-edge CSS techniques that can truly improve your sites and are
ready to be used in your work right away.

This book is not an encyclopedia or reference guide to CSS3; it won’t
teach you every single property, selector, and value that’s new to CSS
since version 2.1. Instead, it will teach you the most popular, useful,
and well-supported pieces of CSS3 through a series of practical but
innovative projects. Each chapter (after Chapter 1) walks you through
one or more exercises involving the new techniques of CSS3 to pro-
duce a finished web page or section of a page. You can adapt these
exercises to your own projects, or use them as inspiration for com-
pletely different ways to creatively use the new properties, selectors,
and values you’ve learned.

In some ways, CSS3 is a new way of thinking as much as a new way of
developing your pages. It can be hard to think of how to use the new
border-image property, for instance, when you’ve been making web
sites for years and aren’t used to having the option of using an image
for the border of a box. Because of this, I’ve included a list of ideas for
how to use each CSS3 property, selector, and value I cover, beyond
just the single way we use it in the exercise. I hope to provide you with
plenty of inspiration for how to put the CSS3 techniques you’re learn-
ing to work in your own projects, plus the technical know-how to
make sure you can use CSS3 comfortably and efficiently.

INTRODUCTIONxiv

Who Should Read this Book

This book is meant for anyone who already has experience using CSS,
but wants to take their sites and skills to the next level. I assume that
you know HTML and CSS syntax and terminology, but you don’t need
to be a CSS expert, and you certainly don’t need to have any experi-
ence using anything that’s new to CSS3. Whether you’ve just started
using CSS or have been developing sites with it for years, this book
will teach you powerful new techniques to add to your CSS toolkit.

Exercise Files

Each of the chapters is made up of at least one exercise where you will
have the opportunity to implement the techniques in a real page, step
by step. You can download the files for these exercises at the book’s
companion site at www.stunningcss3.com and work along in them as
you go through the steps of each exercise. I’ve provided both a starter
file and final file for each exercise, as well as a few intermediate steps
for the longer exercises, so you can check in periodically and make
sure you’ve made the correct changes to your own files.

You can use whatever code editor you like when working with
the exercise files. There are no tools in particular that you must
have in order to work with and create CSS. I personally use Adobe
Dreamweaver, but do all of my CSS development in code view by
hand. If you’re using Dreamweaver or a similar editor, I recommend
you too work on the CSS by hand.

Although a great deal of effort has been made to check the code in
this book, there are bound to be a few errors. Please report any errors
to me through the email form on the book’s web site, and I’ll be sure
to note them on the site and update the exercise files if needed.

Links

Each chapter contains several links to related resources, articles, tuto-
rials, tools, and examples that I think would be useful for you. And it’s
certainly easier to click on a live link than painstakingly type out a URL
that you’re copying from a printed book, so I’ve provided a compen-
dium of all the links from each chapter on www.stunningcss3.com.

www.stunningcss3.com
www.stunningcss3.com

INTRODUCTION xv

CSS3 is a rapidly changing topic, so in a few cases, I’ll be updating
these link lists as new resources come out. You’ll see a note in the
book every time one of these continually updated lists of resources is
present, pointing you to the book site to find the latest information.

Browsers

The exercises in this book have been tested in the latest versions of
the major browsers. At the time of this writing, these browser ver-
sions are Chrome 6, Firefox 3.6, Internet Explorer 8, Opera 10.6, and
Safari 5. The exercises were also tested in the beta versions of Internet
Explorer 9 and Firefox 4 available at the time of this writing, but
behavior may be different from what’s described in the book by the
time these browsers are finalized and released.

The exercises have also been tested in older browser versions that
are still in significant use today (such as Internet Explorer 7 and 6). In
many cases, the CSS3 effects we’ll be adding that work in the newest
browsers also work in older versions of those same browsers; even
when they don’t, the pages still work, are always perfectly usable, and
look fine. We’ll always go over possible ways to provide workarounds
or fallbacks for non-supporting browsers for each technique.

For information on which browsers a given technique works in, I’ve
provided a table of browser-support information for each property or
selector introduced in each chapter. Each browser is set to “yes,” “par-
tial,” or “no.” A value of “yes” means the browser supports all of the
syntax and behavior; it may have very minor bugs or inconsistencies
with the spec, but overall it’s compliant. A value of “partial” means the
browser supports some of the syntax and behavior, but not all, or not
without significant bugs or inconsistencies.

Some CSS3 properties work only using a vendor-specific prefixed
version of the property (you’ll learn about these prefixed properties
in Chapter 1). I’ve indicated which browsers require the prefixes on a
given property in the browser support tables.

In cases where support in a given browser is relatively new and there’s
a chance that some users of the older, non-supporting versions of
that browser are still out there, I’ve provided the version number of
the browser in the browser support table, indicating which version
was the earliest to support the property or selector. If the browser
has supported the property or selector for the last few versions and

N OT E : On the flip side,

I’ve also occasionally

included t

version number in the

support table when it’s

particularly notable

how early the property

or selector was sup-

ported—for instance,

the fact that IE 4 sup-

ports !

INTRODUCTIONxvi

it’s unlikely that there’s any significant number of users of the non-
supporting versions, I have not included the earliest version number
in the support table; you can feel safe that all versions of that browser
in use support it.

Conventions Used Throughout this Book

This book uses a few terms that are worth noting at the outset.

W3C refers to the World Wide Web Consortium, the organization
that creates the official standards and specifications of the web,
including CSS3.

IE refers to the Windows Internet Explorer browser. IE 8 and ear-
lier means IE 8, 7, and 6.

Webkit-based browsers means Safari (both on desktop and on mobile
devices), Chrome, and any other browsers that use a recent ver-
sion of the Webkit browser-rendering engine.

Occasionally, you’ll see a reference to “all browsers.” This means all
browsers that are in significant use today, not literally every single
obscure browser that may have a fractional piece of market share.

All of the exercises in this book are written in HTML5 markup.
However, all that means in this case is that I’ve used the short and
sweet HTML5 doctype, <!DOCTYPE html>, as well as the shorter meta
character encoding, style, and script tags. I haven’t included any of
the new elements that HTML5 introduces, such as section or article,
so the pages will work without any trouble in IE 8 and earlier, but
you’re welcome to change the markup for your own pages in whatever
way you like. All the exercises will also work in HTML 4.01 or XHTML 1.

All CSS examples shown should be placed in an external style sheet or in
the head of an HTML or XHTML document. The exercise files have their
CSS contained in the head of the page, for ease of editing, but it’s best to
move that CSS to an external style sheet for actual production files.

Some code examples will contain characters or lines colored teal-blue.
This indicates that content has been added or changed since the last
time you saw that same code snippet, or, in a new code snippet, that
there is a particular part that you need to focus on. In some cases. you’ll
see a ¬ character at the beginning of a line of code, indicating that the
text has had to wrap to a new line within the confines of the layout of
this book—but this doesn’t mean you have to break the line there.

INTRODUCTION xvii

Each property or selector introduced in this book has a “lowdown”
sidebar providing a brief overview of its syntax, behavior, and use
cases. Not every detail of syntax could be included, of course, but the
most essential information you need is there for quick reference. I’ve
also provided a link to whichever CSS3 module the property or selec-
tor is a part of on the W3C site so you can refer to the full specification
when needed.

This page intentionally left blank

1
The CSS3
Lowdown
Before you start using CSS3, you should have a grasp of the

what, why, and how behind it. In this chapter, you’ll learn

how CSS3 is different from CSS 2.1 and get an overview on

where browser support currently stands. For those browsers

that don’t support CSS3 as fully as we would like, we’ll go

over a number of ways to provide workarounds and CSS3

emulation. You’ll also learn about all the practical benefits

that can come from using CSS3 right away in your projects,

including a number of reasons (let’s not call them “arguments”)

you can use to convince skeptical clients or bosses. Finally, we’ll

go over how CSS3 fits into a progressive enhancement design

methodology and best practices for using CSS3 to make it as

robust and future-proof as possible.

CHAPTER 1: THE CSS3 LOWDOWN2

What is CSS3?
CSS3 is an extension of CSS 2.1 that adds powerful new functionality,
but it’s no longer a single specification. Instead, it’s been divided up
into several modules. Each module is a standalone specification for a
subsection of CSS, like selectors, text, or backgrounds. Every module
has its own set of authors and its own timetable. The advantage of this
is that the entire CSS3 specification doesn’t have to be held up waiting
for one little bit to get worked out—the module that that little bit is in
can wait, while the rest moves forward.

You can see a list of all the modules, plus their current status on the
path towards being finalized, at www.w3.org/Style/CSS/current-work.
We’ll discuss the status of these modules later in this chapter, but for
now let’s get right into what’s new and exciting in CSS3.

Overview of What’s New

Much of CSS3 is a repeat of CSS 2.1, of course. But there are many
additions and revisions. What follows isn’t an exhaustive list of differ-
ences—there are far too many changes to list here—but an overview of
the best-supported, popular, and useful changes to CSS from level 2.1
to level 3.

Image-free visual effects. CSS3 contains a lot of new properties
that allow you to create visual effects that previously could be
accomplished only with images (or sometimes scripting), such as
rounded corners, drop shadows, semitransparent backgrounds,
gradients, and images for borders. Many of these new properties
are in the Backgrounds and Borders module; others are in the
Colors and Image Values modules. We’ll go over many of these
effects in Chapter 2, and use them again in later chapters.

Box transformations. Another category of visual effects that CSS3
makes possible are those that manipulate the box’s position and
shape in two- or three-dimensional space, such as rotating, scal-
ing, or skewing it. These effects are called transforms, and are
covered in the 2D Transforms and 3D Transforms modules. You’ll
learn about transforms in Chapter 2.

www.w3.org/Style/CSS/current-work

WHAT IS CSS3? 3

Unique fonts. The Fonts module introduces the @font-face rule
that allows you to link to a font file on your server and use it to dis-
play the text on your page, instead of being limited to the fonts on
your users’ machines. This makes beautiful typography so much
more attainable. You’ll learn about @font-face in Chapter 3.

Powerful selectors. CSS3 introduces over a dozen new selectors,
mostly pseudo-classes and attribute selectors. They allow you to
target specific pieces of your HTML without needing to add IDs or
classes, streamlining your code and making it more error-proof.
These selectors are included in the Selectors module, naturally.
You’ll learn about some of them in Chapters 4 and 5.

Transitions and animations. CSS3 transitions, covered in a mod-
ule of the same name, are a simple type of animation that allow
you to ease the change from one style on an element to another,
such as gradually and smoothly changing the color of a button
when you hover over it. Full-fledged CSS3 animations, again cov-
ered in a module of the same name, can make more complicated
style changes and movements possible without needing Flash or
JavaScript. Both are covered in Chapter 5.

Media queries. The Media Queries module introduces syntax
for feeding styles based on the capabilities of the user’s display
or device, such as the viewport width, screen resolution, and
how many colors it can display. Media queries are a great tool for
creating mobile-optimized web sites. You’ll learn about them in
Chapter 6.

Multiple-column layouts. CSS3 introduces a few new modules
that make multi-column layouts easier to create. The Multi-
column Layout module deals with flowing the text of a single
block into multiple columns, similar to newspaper layout; we’ll
cover this in Chapter 6. The Flexible Box Layout module deals with
making blocks align horizontally or vertically with each other and
making them more flexible to the available space than floats or
positioning can be. There are also more experimental layout mod-
ules called Template Layout and Grid Positioning. We’ll cover these
last three layout systems in Chapter 7.

CHAPTER 1: THE CSS3 LOWDOWN4

Where CSS3 Stands

So just how soon is all this cool new CSS3 stuff going to be finalized
so we can use it??, I can hear you asking. As I mentioned before, each
module is on its own timetable, and you can see the status of each at
www.w3.org/Style/CSS/current-work (Figure 1.1). The table lists the
status, usually called a maturity level but sometimes called a stability
status by the W3C, of the current version of the module as well as the
next version, with links to each document.

F I G U R E 1.1 All of the
current CSS3 modules
and their statuses

www.w3.org/Style/CSS/current-work

WHAT IS CSS3? 5

The levels the W3C uses are, from least mature to most mature:

1. Working Draft. The first publicly available version of the specifica-
tion, published for review by the community, in order to solicit
further changes. A module or specification can go through several
working drafts.

2. Last Call. A working draft with a deadline for final comments.
It indicates the working group thinks the module does what it
should—though it usually receives significant changes after this
point—and is probably planning to advance it to the next level.

3. Candidate Recommendation. The working group believes the
module meets requirements, is stable, and should be imple-
mented by browsers and put into everyday use by web developers,
in order to see how implementable it is. Browsers are allowed to
drop their vendor prefixes. Changes are still possible after this
point, but not many and not major.

4. Proposed Recommendation. A mature, well-reviewed docu-
ment that has been sent to the W3C Advisory Committee for final
endorsement. There are rarely changes after this point.

5. Recommendation. Complete and finalized. Normally referred to
as a “standard.”

Hopefully it’s clear from this list that we web developers are not only
allowed to use W3C specifications long before they are complete and
finalized Recommendations, but that we are expected to. In fact, if
you look at the list on the W3C site, shown in Figure 1.1, you may
notice that only the SVG module, at the very bottom of the list, is at
Recommendation status (at the time of this writing). Even CSS 2.1,
which we’ve been using for many, many years, is still a Candidate
Recommendation, not even a Proposed Recommendation. Thus, even
though it is not a finalized standard, we can use much of CSS3 now.

Use CSS3 Now

A couple of CSS3 modules are at Candidate Recommendation status,
indicating they should be used, but it’s also fine to use some pieces that
are still in Working Draft status. While you should wait to use proper-
ties and techniques that are still undergoing change and have poor
browser support, there’s no need to wait to use the better-supported
and stable parts of CSS3 in appropriate situations.

CHAPTER 1: THE CSS3 LOWDOWN6

Not until new CSS techniques get put to work can we discover the
real-world challenges of using them so that the W3C can address
these challenges. Using new CSS techniques now in real situations
helps the web development community uncover shortcomings, dis-
crepancies, and holes in the specification, and introduces new ideas
for how the specification can be improved, extended, or clarified.
We can help CSS3 become better by testing it out while we still have
a chance to change it, rather than waiting until the specification is
finalized and missing our chance.

Using these somewhat cutting-edge techniques also shows the
browser vendors which pieces of CSS3 are the most popular and use-
ful to web developers. In effect, it pressures those vendors to support
the new pieces of CSS and move forward.

So, using new CSS early is an essential part of the process towards get-
ting that new CSS to be standard CSS. It will never get finalized if it
never gets used.

I’m not saying that everything that’s listed on the W3C site is fair game
to use right now. Not all new properties and techniques are ready
to be used now, or to be used on every project. You should use only
those pieces of CSS3 that are fairly stable and won’t harm non-sup-
porting browsers by their lack. And you should use them wisely! Don’t
add CSS3 just because you can—decide if it makes sense for the site’s
goals and its users, and add it where appropriate.

Some pieces of CSS3 are not at Candidate Recommendation level
yet, but have stable syntax that has not changed for a long time and
probably won’t change in the future. Unfortunately, there’s no way to
know what these pieces are by looking at the W3C site alone. Instead,
you have to rely on other articles and books to fill you in on the his-
tory and stability of a particular property or technique. In this book,
we’ll deal almost entirely with pieces of CSS3 that are stable and prac-
tical to use now; in the rare exceptions when we do delve into the
more experimental, I’ll always give you a heads-up.

The State of Browser Support
Another consideration that will usually go into whether or not you use
a piece of CSS3 is how well-supported it is by major browsers, or the
browsers of your particular users. While there are times when you may

THE STATE OF BROWSER SUPPORT 7

add more experimental and poorly supported CSS, perhaps as a little
Easter egg for a particular browser, usually it’s not practical to spend
time adding CSS that will be seen by only a tiny sliver of your audience.

But in order to know which pieces of CSS3 are going to be seen by a
good chunk of your audience, you need to know what browsers are
currently in wide use.

Browser Market Share

Browser usage is always changing and hard to establish with
certainty, but Figure 1.2 shows the most used browsers in October
2010, rounded to the nearest percentage. These figures come from
the well-trusted and broadly-sourced statistics from Net Applications
(http://marketshare.hitslink.com/browser-market-share.aspx?
qprid=0). For statistics from many other sources, visit the Wikipedia
page “Usage share of web browsers” at http://en.wikipedia.org/wiki/
Usage_share_of_web_browsers.

IE 8 (32%)

Opera 10.x (2%)

Chrome 7 (2%)

Safari 5 (3%)

Firefox 3.5 (3%)

Chrome 6 (6%) Other (8%)

IE 7 (10%)

IE 6 (16%)

Firefox 3.6 (18%)

F I G U R E 1. 2 Browser
usage share for October
2010

http://marketshare.hitslink.com/browser-market-share.aspx?qprid=0
http://marketshare.hitslink.com/browser-market-share.aspx?qprid=0
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

CHAPTER 1: THE CSS3 LOWDOWN8

Note how small IE 6’s portion of the pie has become (compared to its
peak near the start of 2006, when it had roughly 85 percent of the
market, and IE 5.x had roughly 5 percent). While it’s certainly not
insignificant, now there are a few more Firefox 3.6 users than IE 6
users; when other versions of Firefox, Chrome, Safari, and Opera are
thrown in, IE 6 actually has far fewer users than more modern and
standards-compliant browsers do. Often, the first question asked
when a blogger shows a cool CSS technique is “But how does it look in
IE 6?” However, given current browser statistics, it’s just as relevant to
ask how it looks in Firefox.

That’s not to say you should ignore testing in IE 6 or block its users
from your sites. I believe your content should be accessible in all
browsers, and it’s not hard to make a web page that looks decent and
is easy to use in IE 6. But it’s becoming increasingly impractical to
spend a ton of time agonizing over making your page look spectacular
for a decreasing segment of the audience. Of course, if your particu-
lar audience is heavy on the IE 6 users, do what you need to do. As
I mentioned earlier, you have to decide what and how much CSS3
makes sense for your own site. Tailor it to the project and users, not
to generic overall browser-share statistics.

But unless your own site’s statistics are very different from the over-
all population, we can no longer use the excuse that non-IE users are
a fringe group that doesn’t need special attention. All the time spent
making your page look great in IE 6 and 7 might be just as well spent on
making it look great in non-IE browsers. And using CSS3 is one of the
easiest ways to make your sites look great in non-IE browsers—and even
occasionally IE too—as you’ll learn throughout this book.

How the Major Players Stack Up

Luckily, the most stable pieces of CSS3 that we’d want to use do have
good browser support already. I’ll go over detailed browser-support
information in each chapter when I explain each property, technique,
or selector, but it’s helpful to get a big-picture view of where the
browsers stand. I’ve given each a letter grade that I feel sums up their
overall support of properties, selectors, and values new to CSS3.

Safari 5, Safari for iOS4, and Chrome 5: B+. While Safari and
Chrome are not the same browser and do have differences in how
they render some CSS3 properties, they do share the same Webkit
rendering engine and have a nearly identical level of CSS3 support.

N OT E : Browser sup-

port information will

also be summarized in

Appendix A.

THE STATE OF BROWSER SUPPORT 9

They support most of what is new to CSS3. Their edge comes from
supporting animations, which no other browsers do. Safari 5 is also
the only browser to support 3D transforms. Their main failings are
that their gradient syntax is non-standard and their implementa-
tions of the multi-columns and flexible box layout modules are
buggy and incomplete. They also don't support the template layout
or grid positioning modules, but no browsers do yet.

Safari 4 and Safari for iOS3: B. Apple’s mobile operating system,
called iOS, is currently at version 3 on iPads and original versions
of iPhone and iPod Touch, as well as newer versions of iPhone and
iPod Touch whose users have not yet updated. The version of Safari
on iOS3 matches up to the desktop version of Safari 4. Safari 4 has
mostly the same level of CSS3 support as Safari 5, just no 3D trans-
forms and some minor syntax problems with a few properties.

Firefox 4: B+. Firefox 4 supports all of the same things as Safari 5,
except animations and 3D transforms. It makes up for that “lack”
with a more standards-compliant gradients syntax, a slightly bet-
ter implementation of the multi-columns layout module, and
support for the calc function, which no other browser supports.
It too has a buggy and incomplete implementation of the flexible
box layout module.

Firefox 3.6: B. Firefox 3.6 supports generally the same things as
Firefox 4, except transitions and calc.

Opera 10.6: B. Opera 10.6 supports mostly the same things as
Firefox 3.6, but not gradients or flexible box layout. It supports
transitions, which Firefox 3.6 does not.

Opera 10.5 and Opera Mobile 10.1: B-. Opera Mobile 10.1 corre-
sponds to the 10.5 version of the desktop version. These versions of
Opera support generally the same things as Opera 10.6, but are a
little bit more buggy on a few properties.

IE 9: C+. IE 9 is still a beta as I write this, but for now, it supports
roughly half of what the other major browsers so. The upside is that
the pieces it supports, it supports well, and without a browser prefix.
(You’ll learn about browser-specific prefixes later in the chapter.)

IE 8, 7, and 6: D-. Unsurprisingly, since these browsers were
released far before CSS3 was well developed, IE 8, 7, and 6 support
almost no CSS3. They all support @font-face and the word-wrap
property. IE 7 and 8 also support CSS3 attribute selectors. IE 8 also
supports box-sizing.

CHAPTER 1: THE CSS3 LOWDOWN10

OTHER BROWSER SUPPORT SOURCES

While I provide detailed browser support information throughout this book, CSS3 browser support

is continually changing. Also, since this book doesn’t act as a comprehensive encyclopedia of CSS3

properties, values, functions, rules, and selectors, you’ll need to look elsewhere to find which brows-

ers support some pieces of CSS3.

Mozilla, Opera, and Safari quite helpfully maintain their own lists of what they support:

https://developer.mozilla.org/en/Mozilla_CSS_support_chart

www.opera.com/docs/specs

http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/

SafariCSSRef

Other browser support sites include:

Wikipedia’s “Comparison of layout engines (Cascading Style Sheets)” (http://en.wikipedia.org/

wiki/Comparison_of_layout_engines_(CSS)) is as comprehensive and detailed as you would guess

a Wikipedia page to be.

FindMeByIP (www.findmebyip.com/litmus) lists support for the major CSS3 properties and selec-

tors, as well as HTML5 features, in many browsers.

“When can I use...” (http://caniuse.com/#cats=CSS3) lists support for several popular CSS3 prop-

erties and techniques in current, older, and upcoming versions of the big-five browsers.

Standardista (www.standardista.com/css3) currently includes detailed support charts for bor-

ders, backgrounds, columns, @font-face, and selectors. More modules are added periodically.

QuirksMode’s “CSS contents and browser compatibility” (www.quirksmode.org/css/contents.

html) lists support for a variety of CSS3 and 2.1 selectors and properties. Each has its own page

with details of how it should work and how browsers handle it.

The site CSS Infos maintains lists of -moz- and -webkit- properties, showing which version

of the browser each property appeared in. See http://css-infos.net/properties/firefox.php and

http://css-infos.net/properties/webkit.php.

Campaign Monitor provides a guide on email clients’ CSS support, with CSS3 properties indi-

cated, at www.campaignmonitor.com/css, so you know what you can and can’t use in HTML

email newsletters.

https://developer.mozilla.org/en/Mozilla_CSS_support_chart
www.opera.com/docs/specs
http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariCSSRef
http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariCSSRef
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(CSS)
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(CSS)
www.findmebyip.com/litmus
http://caniuse.com/#cats=CSS3
www.standardista.com/css3
www.quirksmode.org/css/contents.html
www.quirksmode.org/css/contents.html
http://css-infos.net/properties/firefox.php
http://css-infos.net/properties/webkit.php
www.campaignmonitor.com/css

PROGRESSIVE ENHANCEMENT 11

These varying levels of browser support mean that your pages will
look different in different browsers. This is OK, and frankly unavoid-
able, whether you use CSS3 or not. Web pages have never been able to
look identical everywhere because of the user-controlled nature of the
medium. And today, there’s an even wider variety of devices, monitors,
browsers, and settings that people use to browse the web, so you’re
even less likely to create a page that looks identical everywhere.

As long as you focus on making pages that are usable and accessible
for everyone, the cosmetic differences shouldn’t matter much. That’s
part of the philosophy behind progressive enhancement.

Progressive Enhancement
Progressive enhancement is a method of developing web pages where
you first make them work and look decent in base-level browsers
and devices, and then layer on non-essential, more advanced CSS
and JavaScript enhancements for current and future browsers with
better support. For example, you may build a form in plain, seman-
tic HTML that looks fine without CSS available and works without
JavaScript enabled, and then enhance its appearance with CSS and
its usability with JavaScript client-side validation, adding to server-
side validation you already have in place. The goal is to create the
richest experience possible for everyone by taking advantage of the
capabilities of modern browsers while still making sites that are
completely usable for everyone. The book Designing with Progressive
Enhancement (www.filamentgroup.com/dwpe) sums it up nicely:

Progressive enhancement…aims to deliver the best possible experience
to the widest possible audience—whether your users are viewing your
sites on an iPhone, a high-end desktop system, a Kindle, or hearing
them on a screen-reader, their experience should be as fully featured
and functional as possible.

Advantages

While this noble goal of giving as many people as possible the best
experience possible sounds great, you might be able to achieve it
without using progressive enhancement techniques. You could
provide workarounds for older browsers to make them match the

www.filamentgroup.com/dwpe

CHAPTER 1: THE CSS3 LOWDOWN12

appearance and behavior of the site in newer ones as closely as pos-
sible. But this isn’t usually wise. Using progressive enhancement
instead, where the site’s visual richness increases in ever more mod-
ern browsers, is usually better both for your users and for yourself.

GR ACEFUL DEGR ADATION

You may be familiar with the term graceful degradation and think it’s

the same as progressive enhancement. It’s actually an opposite way

of working, though both often have the same outcome. When you

develop with a graceful degradation methodology, you build your

site completely, with all of the features and enhancements you want

to include. Then you add in fallbacks for browsers that can’t support

the fully featured version, making the site degrade in a way that won’t

break in older browsers.

In progressive enhancement, you’re not reverse-engineering a com-

pleted site to work with older browsers. You start out with clean,

semantic HTML and good content, which will work in all devices and

browsers, and then layer on extra styling and features in an unobtrusive

way that won’t harm the base-level browsers, and which will automati-

cally work as browsers improve. You’ll see how this works with the exer-

cises in this book; each page starts out working and looking fine, and

then we’ll layer on the CSS3 to enhance it.

For one thing, it takes a lot of work and time to add hacks, work-
arounds, emulation scripts, and other techniques to try to get an
identical appearance in less capable browsers. Even if you do finally
achieve a near identical appearance—at least with the limited set of
user settings you test with—what’s the gain for the user? All that time
you spent trying to make IE act like a browser that’s 10 years newer
could have been spent adding accessibility techniques, perform-
ing usability testing, or making other site enhancements that would
actually help the users, instead of just making things look a little
bit prettier.

Besides, as I mentioned before, it’s impossible to make your site look
identical everywhere, so even if you work hard at this goal, you’re still
going to come up short. So if the site is going to look somewhat dif-
ferent no matter what, why not use CSS3 to make that difference look

PROGRESSIVE ENHANCEMENT 13

stunning in the latest browsers? Some CSS3 techniques are simply
not “emulatable” in non-supporting browsers. By using progressive
enhancement, you don’t have to leave out these techniques, dumbing
the site down for everyone. There’s no reason users of newer brows-
ers should have to miss out on some of the really great techniques
CSS3 has to offer, simply because some people can’t or won’t upgrade
their browser. Instead, get older browsers as far as you can, and then
keep on improving and pushing the boundaries of the site for newer
browsers. This way, everyone gets the best possible site. As time goes
by and users upgrade and browser support improves, more of your
visitors will see more of your enhancements, effectively making your
site better over time without your doing a thing. You just build it
once, and it gets better and better over time.

Most people will never know that your site looks different in different
browsers and devices, as regular people don’t go around scrutiniz-
ing the details of a design in multiple browsers like we obsessive web
designers do. Even if they do use multiple browsers to view your site,
it’s unlikely they’ll give the visual differences much thought if those
differences don’t affect how easily they can use the site (which they
shouldn’t, if you’re doing your job right). After all, someone who is
viewing your web site on IE 8 at work, Chrome on his home laptop,
Safari on his iPhone, and Opera on his Wii is probably pretty used to
seeing some differences pop up between all these devices.

Let Me Put it This Way...

I’m a big fan of metaphors, not only in everyday life, but in my work.
I find they’re a good way to explain a technical concept to clients or
convince them of the importance of some usability change I want to
make. So, even if you’re already on board with progressive enhance-
ment, perhaps you can use one of the following metaphors on a hesi-
tating client or boss.

Let’s say you ask your selfless spouse to make you a cheeseburger for
dinner. When he or she brings the cheeseburger to the table, it has all
the components it needs to earn its name: a bun, a juicy hamburger
patty, gooey melted cheese, maybe even some ketchup and mustard.
It tastes good and gets the job done.

You have no reason to suspect that your next-door neighbor serves
cheeseburgers that come not only with all the same components as

CHAPTER 1: THE CSS3 LOWDOWN14

your own, but also with lettuce, tomato, bacon, caramelized onions,
and a fried egg. None of these are necessary parts of a cheeseburger,
but they’re delicious enhancements.

It can work similarly with web sites. A bare-bones but functional and
clean-looking web site in IE 6 is like a basic cheeseburger. The web
site does what visitors expect it to and has the content they need. An
IE 6 user has no reason to suspect that Firefox users are seeing some-
thing more fancy, enhanced with CSS3. Unless something looks truly
broken or incomplete in a less-capable browser (like if your burger
got served up with no patty)—in which case you should fix it—your
users are not likely to ever know that things could look better if they
were using a more advanced browser.

If you’re a vegetarian and the cheeseburger metaphor doesn’t do it for
you, just think about a cup of high-quality but plain ice cream versus
one with whipped cream, hot fudge, and sprinkles added. Or perhaps
electronics is more your thing. Whether you watch TV with a small,
old tube TV or with a flat-screen, high-definition LCD screen, you’re
getting the same programming. It just looks a lot better on the LCD
TV. It’s silly to expect it to look the same on a device that is very old—
like IE 6, released in 2001.

Another thing that is silly to expect is for a Blu-ray disc to play in a
VCR. It was never meant to, as VCRs came out way before Blu-ray
discs were developed. It uses newer technology to add better quality
and more features than VHS tapes offered. You still get the movie on
the VHS, as you wanted, but the movie looks better and you get extra
bonuses on the Blu-ray version. Everyone gets the movie they wanted,
and owners of newer technology get a little something extra now
instead of being forced to wait until all the VCRs die out.

Similarly, when someone presents a CSS3 technique, it doesn’t make
sense to ask if it works in IE 6, which came out long before CSS3 was
developed. As long as the web developer is providing the same content
to IE 6, and the CSS3 technique doesn’t actually make the site worse in
IE 6, it’s fine to use a design technique that not everyone can see.

BENEFITS OF CSS3 15

Benefits of CSS3
I hope it’s now clear why progressive enhancement as a general devel-
opment methodology is not only acceptable but good, but we haven’t
really talked about the benefits of CSS3 in particular. The advantages
of using CSS3 over alternative, older techniques extends far beyond
just how cool CSS3 can make your pages look—though that’s certainly
not a benefit to be ignored. As you’ll learn throughout this book, CSS3
allows you to create some really beautiful effects, adding a layer of
polish and richness to your web designs.

But most of the visual effects that CSS3 allows you to create can be
accomplished without CSS3, using alternative tools such as images,
JavaScript, or Flash. So there needs to be some other reason beyond
that “it looks cool” to use CSS3.

And there is another reason. Lots of them, actually. It basically comes
down to this: using CSS3, you can decrease not only the time you
spend developing and maintaining pages, but also the time spent in
loading those pages. Simultaneously, you can increase usability and
accessibility, make your pages more adaptable across devices, and
even enhance your search engine placement. Let’s look at each of
these benefits in more detail.

MORE ON PROGRESSIVE ENHANCEMENT

There’s a lot more that could be said about progressive enhancement—in fact, there’s a whole book

about it called Designing with Progressive Enhancement (www.filamentgroup.com/dwpe). Although I

think I’ve made the point well enough, you may need a more in-depth explanation of what progres-

sive enhancement is and why it matters in order to convince your teammates, boss, or clients. So

here are links to a few excellent articles on the subject:

“The Case for Designing with Progressive Enhancement,” by Todd Parker, Maggie Costello

Wachs, Scott Jehl, and Patty Toland (www.peachpit.com/articles/article.aspx?p=1586457)

“Progressive Enhancement: What It Is, And How To Use It?,” by Sam Dwyer (www.smashing

magazine.com/2009/04/22/progressive-enhancement-what-it-is-and-how-to-use-it)

“Progressive Enhancement: Paving the Way for Future Web Design,” by Steven Champeon

(www.hesketh.com/publications/articles/progressive-enhancement-paving-the-way-for)

“Graceful degradation versus progressive enhancement,” by Christian Heilman (http://dev.opera.

com/articles/view/graceful-degradation-progressive-enhance)

www.filamentgroup.com/dwpe
www.peachpit.com/articles/article.aspx?p=1586457
www.smashingmagazine.com/2009/04/22/progressive-enhancement-what-it-is-and-how-to-use-it
www.smashingmagazine.com/2009/04/22/progressive-enhancement-what-it-is-and-how-to-use-it
www.hesketh.com/publications/articles/progressive-enhancement-paving-the-way-for
http://dev.opera.com/articles/view/graceful-degradation-progressive-enhance
http://dev.opera.com/articles/view/graceful-degradation-progressive-enhance

CHAPTER 1: THE CSS3 LOWDOWN16

Reduced Development and Maintenance Time

By providing the same visual effects, many CSS3 techniques can be
a replacement for “called” images. For instance, to create a drop
shadow behind a box, you no longer need to create one or more
images to use as backgrounds on that box. Instead, just use the CSS3
box-shadow property to generate a shadow. This frees you from hav-
ing to spend the time creating, slicing, and optimizing those images.

You can also tweak CSS more quickly than images if you need to
make changes down the road, or simply test out different variations.
If your client wants to see how that drop shadow looks if it was blur-
rier, or a little farther displaced from the box, or red instead of gray,
you can create each of these variations in a matter of seconds using
CSS3, rather than having to fire up Photoshop to modify and re-
export images.

Some CSS3 techniques also allow you to do away with scripts or
Flash—a nice efficiency boost, as you don’t need to spend time hunt-
ing for the perfect script, configuring it for your site, and testing it.

Finally, many CSS3 techniques can streamline your markup by
requiring fewer nested divs and classes, and this also can translate
into a little less work time for you. For instance, it’s now possible to
put multiple background images on a single element, so you don’t
have to add extra nested elements in just the right configuration and
style them all separately. Also, you can use CSS3 selectors to target ele-
ments in the HTML based on their position in the document tree, so
you don’t have to take the time to create a set of classes, apply them to
all the necessary elements, and then make sure they’re used correctly
on new content down the road.

Increased Page Performance

Less markup and fewer images means fewer kilobytes for users to
download, resulting in faster-loading pages. Fewer images, scripts,
and Flash files also mean fewer HTTP requests, which is one of the
best ways to speed up your pages. In fact, the Yahoo! Exceptional
Performance Team called reducing HTTP requests “the most impor-
tant guideline for improving performance for first time visitors”
(http://developer.yahoo.com/performance/rules.html).

http://developer.yahoo.com/performance/rules.html

BENEFITS OF CSS3 17

THE RIGHT TOOLS IN THE RIGHT PL ACES

At various points throughout this book, I’m going to tout how a CSS3

technique can replace an image, JavaScript file, Flash file, class, or

nested div. But I want to make clear right now that I don’t believe that

any of these things are inherently bad. I’m certainly not advocating

doing away with all images online, for example—that’s ridiculous. All

of these things are spectacular tools that have appropriate uses. It’s

not wise to use CSS in place of one of these technologies if the other is

better suited to the job, such as using CSS to power drop-down menus

when JavaScript works so much better, just because CSS is “cooler.” But

if CSS3 can do something more efficiently or produce better usability,

with an equally or better appearance, I think it’s the wise choice.

When the browser fetches your page from the host server, it’s mak-
ing an HTTP request. Every time the browser finds another file used
in that web page—a style sheet, image file, script, and so forth—it
has to go back to the server to get this file. This trip takes time and
has a much bigger impact on page loading speed than simply how
many total kilobytes all of the components take up. What this means
is that, in general, a page with 10 images at 10 kilobytes each, for a
total of 100 kilobytes to download, is going to take a lot longer to
load than a page with one 100-kilobyte image—or probably even one
200-kilobyte image.

Using CSS3, it’s quite possible to make a graphically rich site that uses
not a single image, drastically cutting the number of HTTP requests
and increasing how fast your pages load.

Now, I’m not saying that every bit of CSS3 you add will make your
pages faster; it depends on what you’d be using instead of CSS3, if
anything, as well as on exactly how you implement the CSS3 version.

For instance, a font file that’s linked to with the @font-face rule,
which you’ll learn about in Chapter 3, is another HTTP request and
another thing the user has to download, and font files can sometimes
be very large. So, in some cases, using @font-face could slow your
pages down. On the other hand, if you were going to be using dozens
or hundreds of images of text instead of @font-face, having users
download one font file is often much faster. It may also be faster than

CHAPTER 1: THE CSS3 LOWDOWN18

a JavaScript or Flash-based text replacement method. This is one
of those instances where the loss or gain in speed depends on what
you’re comparing the CSS3 version against, as well as which fonts
you’re using, if you’re subsetting the characters within them, and
other factors of your particular implementation of @font-face.

Some graphically rich CSS3 techniques, such as gradients, can reduce
HTTP requests but may also make the browser processor work very
hard to render the effects, making the browser sluggish and decreas-
ing usability. Don’t overuse complex effects, and test thoroughly those
that you do implement.

But the point is that many CSS3 techniques can greatly improve your
page performance in almost all instances. This alone is a great rea-
son to start using CSS3, because users really care about page loading
speed. Recently, both Bing and Google ran similar experiments in
which they deliberately delayed their server response time by differ-
ent amounts of milliseconds to see how it would affect user experi-
ence. They found that the longer users wait, the less engaged they are
with a page, evidenced by making fewer search queries and clicking
on fewer results, and the more likely they are to leave. Even delays of
under half a second have an impact. For more details on the business
implications of slow pages, see “The performance business pitch” by
Stoyan Stefanov (www.phpied.com/the-performance-business-pitch).

Better Search Engine Placement

Fast pages are not only good for your users, but they make Google
happy—and don’t we all want to be on Google’s good side? In March
2010, Google started rewarding fast pages by making speed a ranking
factor, so pages that load faster can appear a little higher in the search
results than their slower competitors.

Even if Google wasn’t using speed as a ranking factor and no other
search engines ever will, you may still get a bit of a boost in search
engine placement if you replace images of text or Flash files of text
with real text styled with CSS3. While search engines can read text in
images’ alt attributes and some Flash files, regular text in heading
tags is usually going to be given more weight by the search engines.

www.phpied.com/the-performance-business-pitch

CASE STUDY: THE HIGHWAY SAFETY RESEARCH CENTER 19

Increased Usability and Accessibility

An even bigger benefit of real text instead of images of text is that real
text is more usable for everyone, and particularly for people with dis-
abilities. Real text can be resized or recolored by users to make it eas-
ier to read, selected to copy and paste, searched for with the browser’s
Find function, indexed by search engines and other tools, and trans-
lated into other languages.

That said, CSS3 isn’t a magic bullet for readability; as with any CSS or
design technique, it can be abused, and can harm legibility instead
of aiding it. But when used wisely, using @font-face, text-shadow,
transforms, and other CSS3 effects on real text instead of resorting to
images for these effects can make your pages more usable.

Another way to improve usability with CSS3 is to use media queries.
I already mentioned how media queries let you customize styles based
on the characteristics of the user’s display, allowing you to tailor styles to
the user’s device and settings. This technique can ensure your design is
making the best use of space and is as readable as possible for the user’s
browsing scenario. You’ll learn about media queries in Chapter 6.

Staying at the Front of the Pack

There’s one other benefit to learning and using CSS3 that is exclu-
sive to you: it keeps you at the top of the web designer pile. CSS3 is
not going away. This is how we’re all going to be building sites in the
future. Knowing CSS3 is an increasingly important and marketable
career skill. Right now, it’s something that sets you apart as a top-
notch designer or developer. Sooner than later, it will be something
that’s expected of you. Start using it now, at least on personal projects,
and keep moving your skills and career forward.

Case Study: The Highway
Safety Research Center
To get a better sense of many of these CSS3 benefits, let’s look at how
a real site could be tangibly improved by using CSS3 in place of older
web design techniques. Instead of picking on some stranger’s site, I
thought I would critique one of my own.

CHAPTER 1: THE CSS3 LOWDOWN20

Before CSS3

I designed and developed the CSS and HTML for the UNC Highway
Safety Research Center’s site (www.hsrc.unc.edu) back in 2006.
Figure 1.3 shows the HSRC home page. It hasn’t changed much since
I originally built it, and isn’t nearly as complex as some of the inner
pages, or certainly as many other web pages out there, but even so, it
has a lot of images for such a simple page. You can see that it uses lots
of rounded corners, subtle gradients, and shadows.

I wanted to see how the current page would perform with all these
images. So I downloaded it and tested it in Firefox 3.6, IE 8, and IE 6.
Table 1.1 shows how many HTTP requests occurred and the average
page loading time in each browser.

TA B L E 1.1 Performance in original page

FIREFOX 3.6 IE 8 IE 6

HTTP requests 36 37 47

Page loading time (in seconds) 1.5 1.3 3

These loading times aren’t horrible, I suppose, but they could cer-
tainly be better. Especially in IE 6—the poor thing is getting a pretty

F I G U R E 1. 3 The home
page for the Highway
Safety Research Center

www.hsrc.unc.edu

CASE STUDY: THE HIGHWAY SAFETY RESEARCH CENTER 21

long wait. If I could get the number of HTTP requests down, that
alone would make a big dent in loading times across the board.

A lot of these HTTP requests were coming from the tabbed naviga-
tion bar. Every tab is a separate image that contains three states:
the inactive state, the rollover state, and the current page indicator
(Figure 1.4). When I originally made this page, I was using the back-
ground image technique called “CSS sprites” where you combine
multiple images into one and move around the visible portion using
the background-position property. But I wasn’t using sprites as
aggressively as I could have.

inactive state

rollover state

current page indicator

I didn’t want to compare the new CSS3 version I was going to make
against this poorly optimized version, so I combined all the tabs into
one big image, modified the CSS to use this new image, and tested
this revised version of the page. Table 1.2 shows the results.

TA B L E 1. 2 Performance in revised page

FIREFOX 3.6 IE 8 IE 6

HTTP requests 29 30 33

Page loading time (in seconds) 1.3 1.15 2

Decrease in loading time 13% 11% 33%

Taking a chunk out of the HTTP requests definitely improved the page
loading times, especially in the case of IE 6. But keep in mind that
this one big sprite image with all the tabs in it is was more difficult to
make and will be harder to maintain than individual images; it also
made the CSS more complicated than before. That’s the tradeoff that
you get any time you use sprites. But this page was a better compari-
son for a CSS3-enhanced version of the page.

F I G U R E 1. 4 Each tab image is made
up of three states of the link.

CHAPTER 1: THE CSS3 LOWDOWN22

After CSS3

To create the CSS3 version of the page, I removed nine images and
replaced them with pure CSS equivalents (Figure 1.5). Despite the
changes, the page looks almost identical to the “before” version when
viewed in modern browsers.

1

2

4

3

5

6

7
8 9

I removed the sprite image used for the tabs, and remade the tabs
without using a single image by using border-radius and CSS3-
generated gradients (Figure 1.6). With these changes to the tabs,
they’re now using real text, instead of an image of text, making them
more accessible.

I used this same technique for the two tabs in the footer, and replaced
the footer’s gradient background image with a CSS3 gradient. I also
used a CSS3 gradient to replace the background image in the proj-
ect areas box and behind the “Latest News” text. Then I replaced the
small gradient at the bottom of the header with a box-shadow on the
navigation bar.

F I G U R E 1. 5

CSS3 abilities over-
rode the need for nine
images, previously used
in the numbered spots
shown. The overall page
looks about the same
as it did in Figure 1.3.

F I G U R E 1. 6 The image
tabs (left) look almost
identical to the tabs
made with CSS3 (right).

CASE STUDY: THE HIGHWAY SAFETY RESEARCH CENTER 23

I used border-radius to remove the rounded corner images from the
top and bottom of the project areas box, the bottom of the list inside
it, and the “Latest News” heading block. For both the “HSRC Project
Areas” and “Latest News” heading text, I got rid of the images and
instead used @font-face on real text. The font I chose isn’t identi-
cal to that used in the images, but the one used in the image doesn’t
allow @font-face embedding in its license, and the new one is pretty
close. For the three bottom borders under the “HSRC Project Areas”
text, I used box-shadow, which can create the appearance of multiple
borders without having to use an image.

This isn’t every single instance where CSS3 could be added on this
page, but it does take care of the ones most easily and quickly fixed
without causing much trouble to non-supporting browsers. The CSS
file size has increased slightly due to all the new CSS3, but not by too
much, because most of it replaces long background declarations. The
HTML is identical, except for changes to what’s linked to in the head.

Table 1.3 shows how this page performed. Even though using
@font-face added two HTTP requests, the overall number still
decreased significantly because I got rid of nine images. I also got
rid of the JavaScript I was using in IE 6 to support alpha-transparent
PNGs; it was no longer needed since there are no longer any alpha-
transparent PNGs.

TA B L E 1. 3 Performance in CSS3 page

FIREFOX 3.6 IE 8 IE 6

HTTP requests 22 23 24

Page loading time (in seconds) 1.1 1 1.5

Decrease in loading time 15% 13% 25%

The decrease in loading time that I measured was compared to the
optimized “before” version that used the one big sprite image. On
average, loading time went down by 15 percent in Firefox 3.6, 13
percent in IE 8, and 25 percent in IE 6. This is a limited example, of
course; this decrease could be further magnified by replacing more
images, and it could be much larger on larger or more complex sites,
where it’s not uncommon to find several dozen or more “interface”
images (as opposed to content images, like photos) on a single page.
But the point is that CSS3 alone was able to make the page load sig-
nificantly faster, as well as improve its usability and accessibility a bit.

CHAPTER 1: THE CSS3 LOWDOWN24

This can translate into happier site users, and happy users are always
good for the people behind the site too.

Ironically, even though IE 6 can’t see a bit of the changes we’ve made,
its users benefit most from the addition of CSS3 to the page. IE 6 users
get to enjoy much faster loading pages, thanks to these CSS3 effects
replacing images.

But how does it look in IE? Is it a horrible train wreck? See for your-
self in Figure 1.7, showing IE 8, and take my word for it that IE 6 is
practically identical. IE simply sees rectangular corners instead of
round ones, and no subtle gradients. Does it look just as good? No,
I don’t think so. Does it look horrible? Again, I don’t think so. Is there
any reason IE users will know that they’re missing out on these visual
effects? Not likely. And even if they did, do you think they would
choose rounded corners over faster page loading speeds?

You could work around IE’s failure to see some of the visual effects
by feeding it the rounded corner images and so forth, but is it really
worth it? It’s a lot of extra work for you, and it takes away all the great
gains we’ve made in page performance for IE users. It depends on the
project; there are lots of times where it makes sense, and we’ll add IE
workarounds several times and in several ways throughout this book.
I’m not saying you should never provide workarounds for IE or other
browsers, but you have to consider the tradeoffs.

N OT E : he beta of IE 9

available at the time of

this writing does show

most of CSS3 effects I

added. It may show even

more by the time it’s

actually released.

F I G U R E 1.7 The page
looks fine in IE 8 and
earlier, even though
these browsers don’t
understand the CSS3 I
added.

USING CSS3 WISELY 25

Using CSS3 Wisely
Now that you’ve seen how useful and beneficial CSS3 can be, can
you just plop it into your style sheets and get going? Well, yes, but I
wouldn’t recommend it without learning some best practices first. Just
as with CSS 2.1, CSS3 has its own special considerations that should
go into how you craft your style sheets to make them more organized,
efficient, and future-proof. You also need to know how to implement
CSS3 in a way that won’t harm non-supporting browsers, and how to
provide workarounds for those browsers when you so choose.

Browser Prefixes

When a browser implements a new property, value, or selector that
is not yet at Candidate Recommendation status, it adds a prefix onto
the front of the property with a code for its rendering engine. For
instance, -moz-border-radius is the version of the border-radius
property currently used by Mozilla-based browsers, like Firefox.
Table 1.4 provides a list of the available prefixes.

TA B L E 1. 4 Browser-specific prefixes for CSS properties

PREFIX RENDERING ENGINE POPULAR BROWSERS USING THIS RENDERING ENGINE

-khtml- KHTML Konqueror

-ms- Trident Internet Explorer

-moz- Mozilla Firefox, Camino, Flock

-o-* Presto Opera, Opera Mobile, Opera Mini, Nintendo Wii browser

-webkit- Webkit Safari, Safari on iOS, Chrome, Android browser

* In the Presto rendering engine, speech-related properties are prefixed with -xv- instead of -o-.

In this book, we’ll be sticking with the -moz-, -o-, and -webkit- pre-
fixes. The others aren’t as often-used in general and weren’t needed
for the techniques we’ll be covering.

W H Y T H E Y E X I ST

Vendor prefixes allow browsers to try out new properties, values,
and selectors before they are finalized—a good way for them to be
tested in the wild, and then corrected and refined if necessary. If the
browser were to jump straight to the unprefixed, standard property,
they would be locked into whatever behavior they originally use.

CHAPTER 1: THE CSS3 LOWDOWN26

Developers would start using the unprefixed property immediately,
and would expect it to continue producing the same behavior from
that point onward. If the browser changed the property after this
point, either because its implementation was buggy or the specifica-
tion itself had changed, it would risk breaking all the existing sites
that had already started using the property. Not only does it lock
the browser into its first, buggy implementation, it pressures the
other browsers and W3C to follow suit. Eric Meyer gives two real
examples of how this unfortunate cycle has happened in the past in
his excellent article “Prefix or Posthack” (www.alistapart.com/articles/
prefix-or-posthack).

Even if the browser didn’t change its implementation so as not to
break existing sites, what if the W3C changed the specification?
And what if other browsers started using the new behavior described
in the updated specification? Now you have different browsers dis-
playing one single, standard property in different ways. That’s exactly
how it used to be in the days of Netscape 4, Mac IE 5, and Windows
IE 6. Complicated and unstable hacks, based on bugs completely
unrelated to the actual properties they meant to fix, proliferated
because non-standard browser behaviors weren’t quarantined in
browser-specific properties.

A prefixed property indicates to developers that the property is
somewhat experimental and subject to change. It gives the browsers
flexibility to continue making changes if necessary, which allows the
browsers to release and refine new properties more quickly. This, in
turn, gives developers the opportunity to use new properties sooner
and participate in the refinement process through testing in real-
world scenarios.

Once the specification has become more stable and the browser has
achieved a correct implementation of the property, it can drop the
vendor prefix. If the developer also had the non-prefixed version of
the property in her styles—which is wise for future compatibility—her
pages would now be able to automatically take advantage of the final-
ized behavior of the property. If she didn’t have the non-prefixed
property, there’s no harm done—the old prefixed property will con-
tinue to work in the same way as before. None of the sites using the
prefixed version of the property will break.

www.alistapart.com/articles/prefix-or-posthack
www.alistapart.com/articles/prefix-or-posthack

USING CSS3 WISELY 27

P R O B L E M S W I T H P R E F I X E S

Browser prefixes do have a few disadvantages, though. The chief com-
plaint leveled against them is that you often end up with a few lines of
CSS that all accomplish the same thing, such as:

div {
 -moz-transform: rotate(45deg);
 -o-transform: rotate(45deg);
 -webkit-transform: rotate(45deg);
 transform: rotate(45deg);
}

This repetition adds to the file size of your style sheets and can be just
plain annoying. It would be so much cleaner and nicer to have a sin-
gle line using the standard property. Many CSS preprocessor scripts
allow you to do this, actually—just write the non-prefixed property
and it creates the browser-specific CSS for you. Tools that can do this
for you include Sass (http://sass-lang.com), LESS (http://lesscss.org),
and eCSStender (www.alistapart.com/articles/stop-forking-with-
css3), to name a few. But using scripting to remove the prefixes has a
number of disadvantages itself. If a browser has a buggy implementa-
tion of a property, you can’t choose not to use that browser’s prefix
but keep using the other ones. Nor can you use different values for
various browsers to accommodate their slightly different renderings
of the same property. Also, adding scripts may slow your pages down.
Eric Meyer (www.alistapart.com/articles/prefix-or-posthack) explains
what might be most risky about this method:

By hiding the prefixed properties behind a processor, authors may
forget that what they’re using is experimental and subject to change.
Cognitively, they may start to treat what they’re using as settled and
stable when it may be nothing of the kind.

Although the repetition of browser prefixes is cumbersome, the alter-
native of one standard property producing different behaviors in each
browser as they develop their implementations, resulting in convo-
luted hacks to work around the inconsistencies, is far more annoying.
Plus, as time goes on and support improves, you can remove the pre-
fixed properties, making your style sheets cleaner, instead of having
to maintain hacks in your sheets for years because of a non-standard
browser behavior that has snuck into a non-prefixed property. Let me
quote Eric Meyer’s article once more, where he talks about how the
“pain” of prefixes is temporary:

http://sass-lang.com
http://lesscss.org
www.alistapart.com/articles/stop-forking-withcss3
www.alistapart.com/articles/stop-forking-withcss3
www.alistapart.com/articles/prefix-or-posthack

CHAPTER 1: THE CSS3 LOWDOWN28

It’s a little like a vaccine—the shot hurts now, true, but it’s really not
that bad in comparison to the disease it prevents. And in this case,
you’re being vaccinated against a bad case of multi-year parser hack-
ing and browser sniffing. We suffered through that long plague once
already. Prefixes will, if used properly, ward off another outbreak for
a long time to come.

Another problem with prefixes is that they don’t validate. This isn’t a
problem in and of itself—validation is just a troubleshooting tool, so
if you know why you are getting an error for a prefixed property, you
can just ignore that error and move on. But having a whole bunch of
“benign” errors for prefixed properties mixed in with the others can
make it harder to spot the errors you’re really concerned about.

To ease both of these problems—the repetition and the lack of valida-
tion—some people separate out the prefixed properties into their own
sheet. That way, the main style sheet is kept pristine and will validate
(or at least expose only the “real” validation errors when you check
it). But many CSS people (including me) are not fans of this solu-
tion. First, it adds another HTTP request; this impacts performance
far more than the few extra bytes that the prefixed properties would
add to the main sheet. Second, it makes it easy to forget you are using
the prefixed properties; since they’re to be used with more caution
than regular properties, paying attention to them is essential. If a
browser changes the behavior of one of its prefixed properties, you
may neglect to update your rules accordingly. Or if you’re simply try-
ing to figure out why something is behaving in a certain way, it make
take you a long time to remember that old prefix style sheet and track
down the culprit. So I’m sorry to say that filtering through the valida-
tion errors caused by prefixes is probably the lesser evil compared
with keeping a separate style sheet for prefixed properties.

Despite these disadvantages, most CSS developers are glad that pre-
fixed properties are available and agree that their benefits, explained
earlier, make them worthwhile to use in appropriate situations.

T H E P R O P E R WAY TO U S E B R OWS E R -
S P EC I F I C P R O P E RT I E S

When you use prefixed properties, you should always include the
non-prefixed property as well, and always after all the prefixed ver-
sions. This ensures that when the browser supports the non-prefixed
property, it will use it, overriding the prefixed property listed earlier
and using the newer, more correct behavior.

T I P : When you’re

ready to remove certain

prefixes from your ,

you can use regular

expressions to help you

with the task; see

www.venturelab.co

.uk/devblog/2010/07/

vendor-

happens-next.

www.venturelab.co.uk/devblog/2010/07/vendor-prefixes-whathappens-next
www.venturelab.co.uk/devblog/2010/07/vendor-prefixes-whathappens-next
www.venturelab.co.uk/devblog/2010/07/vendor-prefixes-whathappens-next
www.venturelab.co.uk/devblog/2010/07/vendor-prefixes-whathappens-next

USING CSS3 WISELY 29

For instance, until the release of Safari 5, Safari used the -webkit-
border-radius property. And it was a good thing it did—its implemen-
tation was incorrect in a couple ways (or rather, it became incorrect
as the W3C refined the spec). For one thing, Safari 4 and earlier didn’t
allow you to round each corner independently in the -webkit-border-
radius property, as the specification says you should be able to. It also
used incorrect syntax for specifying the curve of elliptical instead of
perfectly rounded corners.

But this was OK. You could keep the incorrect syntax contained in
the -webkit-border-radius property, unseen by any non-Webkit
browsers. And by including the standard border-radius property
last, containing the correct syntax, you could take advantage of the
improved implementation of Safari 5 as soon as it was available, with-
out having to make a single change to your style sheets. The standard
property was already there, just waiting to be used.

While including the standard property last is almost always advis-
able, there are some rare times when I think you should leave it off
entirely, and just use the browser-specific versions. If it looks like the
syntax is still going through significant changes, I would advise wait-
ing to include the standard property until it becomes more stable.
There’s no point in including it if it’s just going to be ignored or break
when the specification is finally firmed up and browsers start using
the standard property.

A great example of this is CSS3-generated gradients. In Chapter 2,
you’ll learn about how their W3C syntax is still young and that Firefox
and Webkit use radically different syntax in their prefixed properties.
This may make you decide against using gradients entirely—but on the
other hand, it’s a purely visual effect that degrades without a hitch in
non-supporting browsers, and perhaps you’re going to use it only on
an experimental, personal, or single-browser site like an iPhone app.
If you do decide to use gradients despite the possibility of later syntax
changes, the safest course of action is to use the prefixed versions
only. But these cases are rare, partially because browsers don’t usually
make a prefixed version of a property until the syntax is pretty well
fleshed out, and also because even in those cases where they do, you’ll
usually want to wait for more stable syntax.

Another optional guideline to follow when using browser prefixes is
to always preemptively include all possible prefixed versions, even
if some are not being used, on the chance that later they will be. I’m

CHAPTER 1: THE CSS3 LOWDOWN30

neither absolutely for nor against this policy—for me, it depends on
the situation. If I’m working on a site that I’ll have to hand off com-
pletely and never touch again, I may think it best to include all pos-
sible vendor-prefixed properties. But if I’m going to be working on
the site continually, I may find it most efficient to include only the
prefixed properties I need now, and add others later if browsers start
supporting them. You can do it either way.

No matter which prefixed properties you choose to include, it’s a
good idea to put comments in your CSS indicating which property is
used by which browser. It’s not always as obvious as you might think.
For instance, here’s how a group of border-radius properties might
look with comments:

-moz-border-radius: 20px; /* Firefox */
-webkit-border-radius: 20px; /* Safari 4 and earlier */
border-radius: 20px; /* Opera, Chrome, Safari 5, IE 9 */

By including these comments, it makes it easy to later remove the
properties you no longer need when you decide to drop support for a
particular browser.

Dealing with Non-supporting Browsers

There’s no single way that you ought to handle browsers that don’t
support the CSS3 you’re adding. Again, the route you take depends
on what’s best for the site, your users, your client, your own personal
preference, and CSS3 technique itself. We’ll discuss a few different
routes you can take with non-supporting browsers, and throughout
the book we’ll use them all at various points, each when appropriate.

ACC E P T I N G T H E D I F F E R E N C E

In many cases, the best way to deal with browsers not supporting
some of your CSS3 is to just accept the different visual appearance.
That’s what progressive enhancement is all about, after all, and in a
few cases, you have no choice, as there’s really no replacement for the
CSS3 version. But even in those cases where you do have a choice, you
have to ask yourself if the time you take creating a fallback method
for non-supporting browsers is really worth it. Will it really help the
users? Will it improve sales or newsletter signups or whatever the goal
of the site is? In some cases, the answer will be yes—so go ahead and
use an appropriate workaround. But in many cases, the answer is no,

N OT E : here’s a handy

table of the pre

properties in the

four major rendering

engines at http://

peter.sh/experiments/

vendor-prefixed-css-

property-overview. Use

it to compare which

browsers are currently

using a prefixed

property versus a

non-

versus no property at all.

http://peter.sh/experiments/vendor-prefixed-cssproperty-overview
http://peter.sh/experiments/vendor-prefixed-cssproperty-overview
http://peter.sh/experiments/vendor-prefixed-cssproperty-overview
http://peter.sh/experiments/vendor-prefixed-cssproperty-overview

USING CSS3 WISELY 31

as the CSS3 effect is a non-essential, cosmetic enhancement. And in
some cases, adding the workaround will actually make things worse
for your visitors, as adding back images in older browsers may slow
the page down, for instance.

Most CSS3 effects will not harm non-supporting browsers if they’re
not seen. An example of this is the Twitter site (www.twitter.com).
Twitter’s site uses border-radius to create rounded corners at vari-
ous places throughout the design, as well as other CSS3 effects that
aren’t seen in IE 8 and earlier. In up-to-date, non-IE browsers, the
“What’s happening?” box, where you type your tweets, has rounded
corners, plus a blue glow around it when you place your cursor inside
it (Figure 1.8). In IE 8 and earlier, the box simply has straight corners
and no glow (Figure 1.9). There’s nothing broken or wrong about this
appearance—it’s just different. That difference isn’t harming IE users
at all, so there was no need for Twitter to provide workaround tech-
niques to emulate the same appearance.

F I G U R E 1. 8 Twitter’s tweet box has rounded corners
and a blue glow in Firefox.

F I G U R E 1.9 IE 8 doesn’t see the rounded corners or
glow, but there’s nothing broken-looking or ugly in
its alternative appearance.

But there are times when failing to provide a fallback can make things
worse for non-supporting browsers. For instance, if you make a back-
ground color semitransparent using HSLA or RGBA—two new ways of
declaring color in CSS3—browsers that don’t understand these types
of color values will have no color to display, and will make the back-
ground completely transparent. Depending on the text color and the
color of whatever is now showing through that transparent box, the
text may be completely unreadable (Figure 1.10). This is not one of
the situations where you can just accept the difference. You need to
provide a workaround.

www.twitter.com

CHAPTER 1: THE CSS3 LOWDOWN32

So, as with lots of things in CSS, it requires testing in multiple brows-
ers to determine what the best course of action is. Often you can be
all zen and accept the difference, but sometimes you can’t.

P R OV I D I N G A N O N - C S S 3 A N D C S S 3
VA LU E FO R A P R O P E RT Y

In cases where you want to or must provide a fallback, you can some-
times do so simply by providing more than one value for a property in
the same rule: the first one for non-supporting browsers, and the sec-
ond, CSS3 one for more advanced browsers. Non-supporting brows-
ers will ignore the rules they don’t understand, and CSS3-capable
browsers will override the older values with the newer values.

For instance, in the case of the nonexistent background color men-
tioned above, you can provide a solid fallback color in hex notation
first, then the HSLA or RGBA version, like so:

div {
 background: #CC0000;

background: hsla(0, 100%, 40%, .5);
}

Note that a method like this rarely actually emulates the appearance
or behavior of the CSS3 property—the fallback color here is solid, not
semitransparent. But it provides an acceptable second-choice appear-
ance when doing nothing at all would make the page unusable for
users of non-supporting browsers.

U S I N G M O D E R N I Z R TO D E T EC T C S S 3 S U P P O RT

When you want to use two different values to target non-CSS3 and
CSS3-supporting browsers, it’s not always possible to include both
values in the same rule, as I was able to do with the background color
above. There are times when the two values would clash. Or maybe
the two values don’t clash, but you want to provide completely differ-
ent and more extensive fallback styles for the older browsers, and you
don’t want the CSS3 browsers to read and use them.

F I G U R E 1.1 0 In Firefox
(left), the box has a
semitransparent back-
ground, but in IE 8
(right), no background
appears, making the
text unreadable.

USING CSS3 WISELY 33

You could get into browser sniffing, where you use programming to
detect which browser a visitor is using, to create different rules for
different browsers, but that’s unreliable and messy. A better solution
is the script called Modernizr, available at www.modernizr.com. It
detects whether the user’s browser supports a number of CSS3 and
HTML5 features. Modernizr then adds classes to the html element that
indicate which it does and doesn’t support, such as “no-multiplebgs”
if the browser doesn’t support having multiple background images on
a single element and “multiplebgs” if it does.

With these classes in place, you can easily write styles for each class
and be sure that each rule will be seen only by browsers that do
(or don’t) support the piece of CSS3 or HTML5 you’re concerned
about. The following rules could be used to apply different back-
ground colors or images to browsers based on whether or not they
support multiple background images:

#wrapper {
 background-color: #ccc;

background-image: url(one.png), url(two.png),
 url(three.png);

}
.no-multiplebgs #wrapper {
 background-image: url(alternate.gif);
}

The first rule is seen by all browsers, whether or not JavaScript is
enabled and whether or not they support CSS3. Browsers that don’t
support multiple backgrounds will use the background color, and
browsers that do will use the three background images. The next rule
is seen only by browsers that don’t support multiple backgrounds and
do have JavaScript enabled. It feeds these browsers a single alternative
background image in place of the three separate ones it wasn’t able
to use. So no matter what level of CSS support the browser has, and
whether JavaScript is available or not, each browser gets a background
on the wrapper div.

For the most part, Modernizr is best for providing alternative (rather
than emulating) styles to non-supporting browsers. But there are
times when you could use it to emulate the CSS3 behavior or appear-
ance. For instance, if you wanted to round the corners of a box, you
could use border-radius for some browsers, and then use a back-
ground image of rounded corners for browsers that don’t support
border-radius:

www.modernizr.com

CHAPTER 1: THE CSS3 LOWDOWN34

div {
 -moz-border-radius: 10px;
 -webkit-border-radius: 10px;
 border-radius: 10px;
}
.no-borderradius div {
 background: url(corners.gif);
}

Modernizr can be a very powerful resource. I recommend the article
“Taking Advantage of HTML5 and CSS3 with Modernizr,” by Faruk
Ates� (www.alistapart.com/articles/taking-advantage-of-html5-and-
css3-with-modernizr) to see more examples of how Modernizr can be
harnessed to customize the styles to the capabilities of the browsers.

U S I N G J AVA S C R I P T TO E M U L AT E C S S 3

So far, the workarounds we’ve gone over mostly provide an alternative
style to the non-supporting browsers, instead of emulating the CSS3
behavior. In most cases, alternatives are fine. But if you need to have a
more consistent appearance between the two, you need to emulate.

JavaScript can often be put to work to make non-supporting browsers
do the same thing that CSS3 makes more advanced browsers do. For
instance, for years now there have been scripts available for creating
rounded corners.

In each chapter of this book, we’ll go over appropriate scripts for the
technique we’re covering, but here are a few popular scripts that aren’t
“uni-taskers”—they each can handle a variety of CSS3 emulation tasks:

IE7, by Dean Edwards (http://code.google.com/p/ie7-js). Makes
CSS3 pseudo-classes and attribute selectors work in IE 6 through
8. Also makes the CSS3 properties box-sizing and opacity work,
along with a bunch of CSS 2.1 properties and selectors that old
versions of IE don’t support.

Selectivizr, by Keith Clark (http://selectivizr.com). Makes CSS3
pseudo-classes and attribute selectors work in IE 6 through 8.
Must be used in conjunction with another JavaScript library.

cssSandpaper, by Zoltan Hawryluk (www.useragentman.com/blog/
csssandpaper-a-css3-javascript-library). Makes 2D transforms,
box-shadow, gradients, opacity, RGBA, and HSLA work in IE and
other non-supporting browsers.

N OT E : he CSS for

the no-borderradius

rules would actually be

more complicated than

what is shown here, as

you’d need to position

each corner image

on more than one

HTML element. ut I’ve

simplified the CSS shown

in order to just focus on

how Modernizr works for

this example.

www.alistapart.com/articles/taking-advantage-of-html5-andcss3-with-modernizr
www.alistapart.com/articles/taking-advantage-of-html5-andcss3-with-modernizr
http://code.google.com/p/ie7-js
http://selectivizr.com
www.useragentman.com/blog/csssandpaper-a-css3-javascript-library
www.useragentman.com/blog/csssandpaper-a-css3-javascript-library

USING CSS3 WISELY 35

PIE, by Jason Johnston (http://css3pie.com). Makes border-radius,
box-shadow, multiple backgrounds, background-origin, back-
ground-clip, and linear gradients work in IE 6 through 8. It also
enables limited support for border-image and RGBA.

I E F I LT E R S

Another way to emulate CSS3 without using JavaScript is to use
Microsoft’s filters in your CSS to create a variety of visual effects.
These only work in IE, of course, and they’re applied via its propri-
etary filter or -ms-filter property. The syntax for the value of
the filter property partially depends on the specific filter being
used, but the basic format is filter: progid:DXImageTransform.
Microsoft.filtername(sProperties), where “filtername” is the
name of the filter and “sProperties” is its value. In IE 8, the syntax was
updated to -ms-filter as the property name, and you’re supposed to
put quotation marks around its value. You’ll see examples of filters in
use in Chapter 2.

You can see a full list of available filters at http://msdn.microsoft.com/
en-us/library/ms532853%28v=VS.85%29.aspx, but here are the ones
that can be used to emulate CSS3 effects:

The DropShadow, Shadow, Glow, and Blur filters can emulate
box-shadow and text-shadow.

The Gradient filter can emulate RGBA, HSLA, and linear gradients.

The Alpha and BasicImage filters can emulate opacity.

The Matrix and BasicImage filters can emulate 2D transforms.

The nice thing about filters is that they work without JavaScript and
only in IE, without any need to hide them from other browsers, mak-
ing them simple to apply. But they do have several disadvantages to
be aware of:

Length. It takes a lot of characters to write a filter. If you use a lot
of filters in a single sheet, you could increase its file size signifi-
cantly. To combat this, you could place the filters in an IE-only
style sheet, fed to IE with conditional comments, as you’ll learn
about in a moment. That way, at least the browsers that don’t need
them don’t have to download the extra bytes.

Invalid CSS. Your style sheets won’t validate if they contain filters.
This isn’t really a problem as long as you understand why they’re
not validating. But if it bothers you, you can place the filters in an
IE-only style sheet so that at least your main style sheets validate.

N OT E : New scripts

will likely continue to be

released after this book

has gone to print. o see

the most up-to-date list

of CSS3 emulation scripts,

go to www.stunningcss3.

com/resources.

www.stunningcss3.com/resources
www.stunningcss3.com/resources
http://css3pie.com
http://msdn.microsoft.com/en-us/library/ms532853%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms532853%28v=VS.85%29.aspx

CHAPTER 1: THE CSS3 LOWDOWN36

Performance. Filters can make the page load slowly and use up a
lot of memory.

Jagged text. Filters can turn off ClearType rendering in Windows
so that text is no longer anti-aliased, making it look jagged.

Other bugs. Occasionally, filters will trigger other bugs in IE. For
instance, in Chapter 2, you’ll see how a filter makes CSS-generated
content disappear.

Because of these problems, I recommend you use filters only when
you really have to. When you do use them, do so sparingly, and test
thoroughly.

Filtering IE with Conditional Comments

Often, the only browsers for which you need to provide workarounds
are IE 6 through 8. In these cases, you’ll need some good ways to feed
rules or scripts to IE only (or hide them from IE). You’re probably
already adept at doing this—providing IE with its own care and feed-
ing is nothing new to CSS3. But just in case you need a refresher, this
section offers a few ways you can target IE and IE alone.

Hacks that take advantage of CSS bugs in IE are the oldest way of
targeting IE, and many people still use them. The most popular and
useful IE hacks are the star html hack (http://css-discuss.incutio.com/
wiki/Star_Html_Hack) and the underscore hack (http://wellstyled.
com/css-underscore-hack.html). The nice thing about hacks is that
they’re right there in your main style sheet—they’re easy to spot when
you need to make changes or track down where some style is coming
from, and they don’t add another HTTP request. But some hacks are
invalid CSS, and using many of them adds to the file size of all brows-
ers, not just the ones that need them. Plus, unless you have the hacks
memorized, you can’t tell at a glance which browser is getting which
value, and this can make it harder for other developers on your team
to maintain your code.

Because of these problems, most CSS developers now use conditional
comments when they want to target IE. Conditional comments are a
special form of HTML comment that only IE can read. They’re valid
HTML, so they don’t harm any other browsers—all non-IE browsers
just skip over them, just like any other HTML comment. They allow
you to write HTML that only IE will use, or that only certain versions
of IE will use.

http://css-discuss.incutio.com/wiki/Star_Html_Hack
http://css-discuss.incutio.com/wiki/Star_Html_Hack
http://wellstyled.com/css-underscore-hack.html
http://wellstyled.com/css-underscore-hack.html

USING CSS3 WISELY 37

But don’t we want to feed IE its own CSS, not HTML? Yes, but condi-
tional comments allow us to do this, in a few different ways.

P R OV I D I N G I E- O N LY ST Y L E S H E E TS

The first conditional-comment option is to place a link or @import
directive for an IE-only style sheet inside a conditional comment that
targets all versions of IE, like this:

<!--[if IE]>
<link rel=”stylesheet” href=”ie_all.css” type=”text/css”>
<![endif]-->

Within this style sheet you can then use hacks to feed rules to differ-
ent versions of IE, if necessary. However, with IE 9 coming out soon
and having much better standards support, you probably want to
make sure that version doesn’t use your IE hack sheet. To avoid this,
structure your conditional comment so that it targets only IE 8 and
earlier, using this syntax:

<!--[if lte IE 8]>
<link rel=”stylesheet” href=”ie_lte8.css” type=”text/css”>
<![endif]-->

The lte part of the conditional comment stands for “less than or
equal to.” Other possible values are lt for “less than,” gte for “greater
than or equal to,” and gt for “greater than.”

Instead of using just one IE sheet, another option is to use multiple
conditional comments to feed a different style sheet to each version
of IE you need to fix, like this:

<!--[if IE 6]>
<link rel=”stylesheet” href=”ie_6.css” type=”text/css”>
<![endif]-->
<!--[if IE 7]>
<link rel=”stylesheet” href=”ie_7.css” type=”text/css”>
<![endif]-->
<!--[if IE 8]>
<link rel=”stylesheet” href=”ie_8.css” type=”text/css”>
<![endif]-->

This avoids the need for having hacks in any of the style sheets, but it
may be a little harder to maintain.

T I P : It’s also a good

idea to use conditional

comments t

scripts that fix IE, such

as the ones listed above,

 E only. That way,

no other browser will

download a script it

doesn’t need.

CHAPTER 1: THE CSS3 LOWDOWN38

DISADVANTAGES OF CONDITIONAL COMMENTS

While conditional comments are great because of how reliably they filter

IE, using them to feed IE-only style sheets is not without its disadvantages:

Extra HTTP requests. Every extra sheet you create is another

resource the browser has to get from the server, and each of those

trips slows your pages.

Rules for single-object split between two or more places. This can

increase the time (and frustration) it takes to debug a problem on

an object, as it may take you a while to remember that you have

another sheet with rules for the same object hidden away in it. It’s

also easy to forget the IE rules if you later change something in your

main sheet that ought to be changed in the IE sheet as well.

Block parallel downloading in IE 8. Having a conditional comment

in your HTML blocks IE 8 from downloading other resources on the

page until the main CSS file has been downloaded. It doesn’t mat-

ter what version of IE you’re targeting with your conditional com-

ment, and it doesn’t matter if the conditional comment is being

used to serve CSS or not—this bug is always there in IE 8. And it’s

a pretty bad one—it can add significantly to the loading time of

your pages. The only fix is to add an empty conditional comment

above the main CSS file, or to use conditional comments around

the html tag instead of elsewhere. We’ll go over this latter solution

in a moment. Find out more about this bug at www.phpied.com/

conditional-comments-block-downloads.

H I D I N G F R O M I E

Conditional comments can also be used to hide content from IE, not just
feed it content. These are called downlevel-revealed conditional com-
ments (though it’s not a very helpful name). The syntax looks like this:

<!--[if !IE]>-->
<link rel=”stylesheet” href=”not_ie.css” type=”text/css”>
<!--<![endif]-->

The exclamation mark in front of IE tells all versions of IE that they’re
not to use anything until they see <![endif], which closes the condi-
tional comment.

www.phpied.com/conditional-comments-block-downloads
www.phpied.com/conditional-comments-block-downloads

USING CSS3 WISELY 39

This time, all other non-IE browsers do see the HTML between the
conditional comments, because the beginning and closing condi-
tional comments are actually each a standalone, regular HTML com-
ment. Here’s what non-IE browsers essentially see:

<!-- stuff that doesn’t concern me, and now the comment is
over and I should start parsing again -->
<link rel=”stylesheet” href=”not_ie.css” type=”text/css”>
<!-- more stuff that doesn’t concern me, and now this
comment is over -->

See how each comment is a standalone comment that opens and
closes itself on the same line? There’s no reason for browsers to
ignore the HTML outside of the comments. IE ignores it only because
it’s been programmed to do so with its special syntax.

You can also use downlevel-revealed conditional comments on spe-
cific versions of IE, like this:

<!--[if !IE 6]>-->
<link rel=”stylesheet” href=”not_ie6.css” type=”text/css”>
<!--<![endif]-->

A D D I N G I E-V E R S I O N C L A S S E S O N T H E html TAG

Another method of using conditional comments is not to use them to
feed IE its own style sheets, but to add classes to the html tag that indi-
cate what version of IE is in use. Then, you simply write rules for each
of these classes in your main style sheet. This technique isn’t as com-
mon as other conditional comment methods, but it’s been gaining in
popularity since Paul Irish blogged about it in 2008 (http://paulirish.
com/2008/conditional-stylesheets-vs-css-hacks-answer-neither).

Here’s what the HTML could look like:

<!--[if lt IE 7]> <html class=”ie6” lang=”en”> <![endif]-->
<!--[if IE 7]> <html class=”ie7” lang=”en”> <![endif]-->
<!--[if IE 8]> <html class=”ie8” lang=”en”> <![endif]-->
<!--[if IE 9]> <html class=”ie9” lang=”en”> <![endif]-->
<!--[if gt IE 9]> <html lang=”en”> <![endif]-->
<!--[if !IE]>--> <html lang=”en”> <!--<![endif]-->

N OT E : For more on

complex and clever

conditional comment

syntax, see “Things You

Might Not Know About

onditional Comments”

by Louis azaris (www.

impressivewebs.com/

conditional-comments).

N OT E : The spaces

between the tags in this

code are simply there to

make it easier to read.

You can remove them

in your real pages if

you like.

www.impressivewebs.com/conditional-comments
www.impressivewebs.com/conditional-comments
www.impressivewebs.com/conditional-comments
http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither
http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither

CHAPTER 1: THE CSS3 LOWDOWN40

WHY THE html TAG?

If you prefer, you could just as easily use this trick to apply classes to the

body tag or a wrapper div instead of the html tag—just so long as it’s

some element that’s around all the other elements on the page.

But the html element does have an advantage over other wrapper

tags: it doesn’t block parallel downloading of style sheets in IE 8 (as

explained earlier in “Disadvantages of conditional comments”). Adding

conditional comments around the body tag or a wrapper div doesn’t

fix this IE 8 bug; in these cases, you’d need to add an empty conditional

comment above your main CSS file to stop the bug.

It’s worth mentioning that in HTML 4 and XHTML 1, class attributes

weren’t allowed on the html tag, so this technique would make your

page’s markup invalid. But they are allowed now in HTML5—and, luckily,

that’s the doctype we’re using throughout this book!

I know this looks rather overwhelming, but it’s really quite simple
if you walk through it line by line. Each line is simply being read by
a different version of IE and spitting out a different html tag. For
instance, when IE 6 loads the page, it sees the conditional comment
for lt IE 7, says “Hey, I’m less than 7! I’m going to apply the stuff
inside this conditional comment!” and spits out the HTML <html
class=”ie6” lang=”en”>. IE 6 then gets to the next conditional com-
ment and sees that it doesn’t apply to itself, so it skips it. And so on
down the page. This happens in every version of IE, so each gets only
one html tag, and each html tag has a class on it that identifies which
version of IE is in use.

Non-IE browsers ignore all conditional comments, so they ignore the
first five lines. The sixth line uses a downlevel-revealed conditional
comment, so IE doesn’t use it and non-IE browsers do. Thus, non-IE
browsers apply only the last line with a plain, class-less html tag.

Once you have this HTML in place, you can create rules for any ver-
sion of IE you wish directly in your main style sheet, removing an
HTTP request and keeping your rules all in one place for easier
debugging and maintenance. You don’t have to use hacks, and you
don’t have to worry that non-IE browsers might see something they
shouldn’t. For instance, if you wanted to feed IE 6 a height value to
make up for its lack of min-height support, you could simply do this:

DEALING WITH UNSUPPORTIVE CLIENTS OR BOSSES 41

div { min-height: 100px; }
.ie6 div { height: 100px; }

While including IE-specific rules in your main style sheet does add
to its size, the increase should be minimal—hopefully, you are writ-
ing CSS that avoids IE bugs in the first place instead of getting littered
with hacks. Plus, remember that HTTP requests are far more expen-
sive in terms of page performance than an extra kilobyte or two, so
overall this technique should be more efficient, both in terms of page
performance and of your development and maintenance process.

Because of these advantages, I like this last option for filtering IE the
best, so it’s the method we’ll be using in this book. Feel free to skip the
html classes and separate IE rules out into their own sheets instead if
that’s your preference.

Dealing with Unsupportive
Clients or Bosses
Sometimes the obstacle to using CSS3 successfully isn’t so much the
lack of support in browsers, but rather from your client or boss. If
you’re concerned about getting pushback from the people paying
the bills, here are a few strategies that I hope will help you get CSS3
accepted at your workplace.

Don’t Tell Them Everything

Let’s start off with what might be the easiest “buy-in” strategy of all—
call it the anti-strategy, if you will. I’ll say it bluntly: maybe your client
or boss need not know at all that you’re even using CSS3. Think of it
this way: if you hire someone to build you a house, you don’t need or
want to know the names of every tool, material, and technique the
contractor is going to use along the way. You care about some of the
technical details, but for the most part you’re more concerned with
the bigger picture and making sure your goals are met—in whatever
way that contractor thinks is best.

Sometimes web design is a bit like this. While there are plenty of tech-
nical details you do need to run by your client or boss before imple-
menting them, there comes a point where you just need to decide
what the best tool for the job is, and use it. For instance, it’s probably

CHAPTER 1: THE CSS3 LOWDOWN42

best to discuss whether you’ll be using CSS3 animations or Flash for
a particular animation on the site, but you don’t necessarily need to
ask your client whether he wants to use HSLA or an alpha-transparent
PNG for a semitransparent background. Nor do you need to ask if
it’s OK if you add a subtle text-shadow to a heading to make it stand
out a bit more. If you’re going to be using CSS3 in limited amounts
for small visual details, you can probably quietly decide that on your
own, and then just implement it.

Educate Them About Progressive
Enhancement Up Front

When you’re still in the sales-pitch phase of a new project, be sure to
always include some discussion of progressive enhancement. Before
starting work, make sure your client understands the basic idea
behind progressive enhancement and how it will affect her own site.
You’ll probably need to show visual examples in multiple devices and
browsers, preferably from real sites, to make the point clear. Discuss
which browsers you will enhance and which browsers will get the
more bare-bones version. Find out which browsers matter most to
your particular client based on usage statistics for her current site or
the planned audience of a new site.

When discussing progressive enhancement with your client or boss,
you don’t need to go into technical details, but talk about how designs
looking different in different browsers is inevitable and even good.
To convince them it’s good, you’ll probably need to play to one or all
of these three angles: saved money, happier users, and better search
engine placement.

Tell them how designing using progressive enhancement, and CSS3
in particular, can reduce initial development time as well as mainte-
nance time over the entire life of the project, costing them less. Also
tell them how they can save money on bandwidth costs because CSS3
reduces the need for so many external resources like images, and
often reduces file sizes. Remind your client that performing compli-
cated workarounds for IE is billable time, and question what the ROI
of that choice will be.

Talk about the ways that CSS3 can improve usability and how this can
translate into happier users who stay on the site longer, which in turn
can translate into more sales, signups, or whatever goal the site is
aiming for.

DEALING WITH UNSUPPORTIVE CLIENTS OR BOSSES 43

Impress them with your knowledge of Google’s search algorithm by
explaining that Google now rewards fast sites, and go on to explain
how CSS3 can make their sites faster.

In short, emphasize to your client or boss that progressive enhancement
is in his or her best interest—because it truly is. It may not get accepted
overnight, but keep working on helping your clients understand the
reasoning behind web design and development best practices like pro-
gressive enhancement. Some day—pretty soon, we hope—these practices
will be mainstream, and assumed, and then you’ll already be ahead of
the pack in providing better benefit to all users.

Manage Expectations from Design Mockups

One of the ways designers most frequently get into trouble is by
showing their clients something in a design comp, otherwise known
as a mockup, and then having the client expect the final product to
look exactly like that in all browsers at all times. Even if you intended
for the appearance shown in the mockup to display only in up-to-
date, advanced browsers, you’ll often end up forced to add in work-
arounds and hacks to try to make it look the same everywhere. There
are a few ways you can avoid getting stuck in this trap.

D E S I G N I N T H E B R OWS E R

The best way to avoid setting unrealistic expectations based on your
design comps is to never create any comps at all—or at least never
show them to your client. Instead of using Photoshop or Fireworks to
mock up your design as a static image, go straight to HTML and CSS to
create the design mockup in its real, final medium. Show the client a
working page that he can play with. As long as you make sure to show
it to him in his own browser, he’ll be able to see only what his browser
is capable of, and no more.

Although this method of going straight to the CSS may seem like it
would be a lot more work, given the fact that if the client doesn’t
like the site you might have to rebuild it entirely, it shouldn’t be
more work if done wisely. In fact, working in HTML and CSS should
save you time.

You’ll need to make sure that you get a lot of information up front
from the client about what he expects from the design and what his
tastes are. Don’t settle for “I’ll know it when I see it.” Push him to give
you detailed answers.

CHAPTER 1: THE CSS3 LOWDOWN44

MORE ON DESIGNING WITHOUT
A GR APHICS PROGR AM

For more on the rationale and process behind designing in a browser, see:

“Make Your Mockup in Markup,” by Meagan Fisher (http://24ways.

org/2009/make-your-mockup-in-markup)

“Walls Come Tumbling Down presentation slides and tran-

script,” by Andy Clarke (http://forabeautifulweb.com/blog/about/

walls_come_tumbling_down_presentation_slides_and_transcript)

Also, work out the overall page structure and layout, using simple
wireframes, before delving into any CSS work. That way, even if the
client doesn’t like the images, colors, or fonts you used, at least every-
thing will be in the right place, or close to it, making changes to the
design at this point much less time-consuming.

In fact, being able to change the appearance by editing CSS in a single
file is often much faster than editing graphic comps. In the time it
takes you to get the anti-aliasing and line-height and text wrapping
just the way you want them in a graphics program, you could have
probably done the same thing twice in CSS, and had a more accurate
representation of how it would really look in the browser to boot.
Also, being able to play with the design in a browser allows you to spot
problems in the design that would only occur in a live page. You can
fix these problems as soon as you spot them, instead of placing prob-
lematic design elements into a comp that your client might then fall
in love with, forcing you to spend hours agonizing over how to actu-
ally implement them in a real page.

You can still use a graphics program for generating your own ideas in
the early stages of creating a design, and for laying out small areas of
the page that do need complex graphics that CSS alone can’t handle.
But overall, using the real tool that web pages are styled with—CSS—
to build your designs will lead to fewer headaches down the road.

Despite these benefits, I know that designing in the browser is a
huge shift from how most web designers work and what most cli-
ents expect. I admit that I have not been able to do it myself very
often. Plus, you may have no control over the comps—they may be
created by separate designers and simply handed over to you with

http://24ways.org/2009/make-your-mockup-in-markup
http://24ways.org/2009/make-your-mockup-in-markup
http://forabeautifulweb.com/blog/about/walls_come_tumbling_down_presentation_slides_and_transcript
http://forabeautifulweb.com/blog/about/walls_come_tumbling_down_presentation_slides_and_transcript

DEALING WITH UNSUPPORTIVE CLIENTS OR BOSSES 45

instructions to build exactly what is shown. If it’s not possible to
design in the browser in your situation, read on for other ways you
can avoid setting your clients up for disappointment.

E X P L A I N T H E L I M I TAT I O N S O F CO M P S

If you’re going to present your clients with traditional design comps,
showing only one view of each page, be sure to explain to them that
they’re just mockups, not true representations of what everyone
will see. Before ever showing them a comp, make sure they under-
stand that static images can never be completely accurate because
it’s impossible to show all the variations in browsers, screen sizes,
available fonts, and more. Explain that not every visual detail they see
in the mockup will be available to every viewer—including possibly
themselves—in the browser. Some people will see slightly less attrac-
tive variations based on what their browsers can and can’t handle, but
you’ll use the best features of each browser to give a good experience
to everyone.

S H OW P O S S I B L E VA R I AT I O N S

If you have the time, it’s well worth it to create variations of each
comp, to show some of the possible variations that users in different
scenarios will see. For instance, you might create a comp of the home
page at three different widths: 480 pixels for mobile phones, 750
pixels for small monitors, 1200 pixels for wide monitors. You might
also create a comp to emulate IE 8’s expected appearance, showing,
perhaps, that this browser won’t see the rounded corners and trans-
lucent backgrounds shown in the main comp.

Yes, this is more work up front. But if it keeps you from having to
jump through hoops to try to make the page look just as gorgeous in
IE as it does elsewhere, and if it allows you to use CSS3 and enjoy all
of its time-saving benefits, then in the long run it will probably be less
work. And you’ll have a better finished web site to show for it.

This page intentionally left blank

2
Speech Bubbles
One of the most fun and easy uses of CSS3 is for layering on

visual “frosting”—non-essential visual flair and little details

that can push your design from adequate to alluring. We’ll use

some of the most straightforward and well-supported CSS3

properties to create the appearance of three-dimensional

speech bubbles that can be used to style blog comments, pull

quotes, and more.

CHAPTER 2: SPEECH BUBBLES48

WHAT YOU’LL LEARN

We’ll create the appearance of speech bubbles without using any images, just these pieces of pure CSS:

The word-wrap property to contain overflowing text

The border-radius property to create rounded corners

HSLA to create semitransparent backgrounds

The linear-gradient function to create gradient backgrounds

The box-shadow property to create drop shadows behind objects

The text-shadow property to create drop shadows behind (you guessed it) text

The transform property to rotate objects

The Base Page
Let’s say you’re working on styling a blog’s comments section. Before
delving into any CSS3 fanciness, you’d want to get some basic styles in
place to take care of older, non-CSS3-supporting browsers. As I men-
tioned in Chapter 1, it’s important to make sure your pages are func-
tional and at least decent-looking in browsers that don’t support CSS3
before you add on CSS3 as part of progressive enhancement.

F I G U R E 2 .1 The com-
ments area before
any CSS3 is applied.

CORRALLING LONG TEXT 49

Figure 2.1 shows a blog’s comments section with some basic styles
applied. The text, avatar image, commenter’s name, and date for
each comment have been laid out neatly, the text is formatted, and
we even have some basic backgrounds and borders in place. There’s
nothing wrong with this comments area; it’s usable, it’s clean, it’s
attractive. Anyone seeing it in an older browser would not think they
were missing something or that the page was “broken.”

But there’s a lot we can do with CSS3, without adding a single image
or touching the markup, to jazz up the page’s appearance. To get
started, download the exercise files for this chapter at www.stun-
ningcss3.com, and open speech-bubble_start.html in your code editor
of choice. Its CSS is contained in a style element in the head of the
page, for ease of editing.

Corralling Long Text
OK, I know I just said we were going to jazz up the comments’ appear-
ance. But before we get into the actual speech bubble styles, let’s
quickly take care of an old, frustrating text-formatting problem that
can be solved with the simplest bit of CSS3 you can imagine.

It’s not uncommon for people to include URLs in comments and
forum posts, and these URLs often overflow their containers due to
their length (Figure 2.2). If the URLs have dashes (-) in them, all the
major browsers can wrap the text of the URLs just fine. But Webkit-
based browsers and IE will not wrap at the forward-slash (/) character,
and none of the major browsers will wrap at underscores (_).

In CSS3, there’s finally an easy way to tell the browser to wrap text
within words and stop it from overflowing. All you have to do is give the
word-wrap property a value of break-word, and the browser will wrap
text within a word if it has to in order to keep it from overflowing.

N OT E : Here’s a pleas-

ant surprise: the word-

wrap property works in

I , as far back as ver-

sion 5.5! he property

was actually created

by icrosoft and later

adopted by W .

F I G U R E 2 . 2 Long URLs
often overflow their con-
tainers, especially if they
contain underscores.

www.stunningcss3.com
www.stunningcss3.com

CHAPTER 2: SPEECH BUBBLES50

THE LOWDOWN ON THE word-wrap PROPERT Y

The word-wrap property is part of the Text module found at

www.w3.org/TR/css3-text. It controls whether or not text is allowed to

break within “words.” (The separate text-wrap property controls how

lines break between words.) The word-wrap property can be set either

to normal (the default) or break-word.

Other than breaking long URLs, you might want to use word-wrap for:

Keeping data tables from becoming too wide and overflowing or

breaking your layout; see www.456bereastreet.com/archive/200704/

how_to_prevent_html_tables_from_becoming_too_wide

Wrapping displayed code snippets in pre elements; see www.

longren.org/2006/09/27/wrapping-text-inside-pre-tags

TA B L E 2 .1 word-wrap browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 5.5+ Yes, 3.5+ Yes Yes Yes

In speech-bubble_start.html, find the blockquote rule in the CSS in
the head of the page, and add the word-wrap property:

blockquote {
margin: 0 0 0 112px;
padding: 10px 15px 5px 15px;
border-top: 1px solid #fff;

 background-color: #A6DADC;
word-wrap: break-word;

}

Save the page and check it in a very narrow browser window. Ah,
much better. The browser will still try to wrap first at normal break-
points, but if it has to, it will now wrap the text at underscores or even
within a word (Figure 2.3). Obviously, placing a break within a word
is not ideal, but I think in this case it’s preferable to the text overflow-
ing and will probably only occur on long URLs, not regular text.

Now that we’ve taken care of that little annoyance, let’s start making
these comments look like speech bubbles!

www.w3.org/TR/css3-text
www.456bereastreet.com/archive/200704/how_to_prevent_html_tables_from_becoming_too_wide
www.456bereastreet.com/archive/200704/how_to_prevent_html_tables_from_becoming_too_wide
www.longren.org/2006/09/27/wrapping-text-inside-pre-tags
www.longren.org/2006/09/27/wrapping-text-inside-pre-tags

GRAPHIC EFFECTS SANS GRAPHICS 51

Graphic Effects Sans Graphics
You can create very graphic-looking speech bubbles without using
any actual graphics. Avoiding graphics has many benefits beyond just
being able to amaze your designer friends. You benefit by saving all
the time and effort spent creating, slicing, and optimizing graphics,
and then redoing them when your client inevitably wants to make
one small change. Your visitors benefit from the increase in page
speed that comes from having less data to download and fewer HTTP
requests to the server.

Rounding the Corners

Those sharp, rectangular-cornered comments don’t look very bubble-y,
do they? Let’s round the corners to start getting more of a speech-
bubble look.

Rounded corners are a simple, common visual effect that used to
be surprisingly hard to create in an actual web page. Creating the
rounded-corner images in a graphics program was time-consuming,
as was creating the actual HTML and CSS. You’d often have to add
a bunch of extra nested divs to place each corner image separately,
since CSS 2.1 allows only one background image per box, and the
CSS used to actually control the placement of the images could get
complicated. The images, along with the bloated markup and CSS,
bulked up the amount that each visitor had to download, slowing
down page-loading speeds. Even if you used a script to dynamically
create the rounded corners instead of manually creating and applying
images, you were still adding to the number of files that users had to
download and decreasing your pages’ performance. All this trouble
for some simple-looking little rounded corners!

F I G U R E 2 . 3 The browser
will now break text between
any two characters.

N OT E : There’s more

in-depth informa

tion on the benefits

of reducing images in

hapter 1, as well as a

real-world case study.

CHAPTER 2: SPEECH BUBBLES52

CREATING OVALS AND CIRCLES
WITH border-radius

If you want your speech bubbles to be complete ovals instead of

rounded rectangles, you’ll need to use elliptical-shaped corners instead

of perfectly round ones. Elliptical just means that the curve of each cor-

ner is somewhat flattened out—just like an oval. To specify an elliptical

corner, you write two measurements, separated by a slash, such as this:

border-radius: 50px/20px. (Safari 3 and 4 use the non-standard

syntax of no slash, just a space.) This means that the curve will extend

horizontally 50 pixels but vertically only 20 pixels, making a flattened,

elliptical curve. You can make each corner have different angles; find

out how at http://css-tricks.com/snippets/css/rounded-corners.

To create circles, first give your box the same width and height; use

ems as the unit of measurement instead of pixels to ensure it can grow

with its text. Then set each corner’s border-radius to one-half the

width/height value. For instance, if you have a box that is 10 ems wide

and tall, use border-radius: 5em. See http://blog.creativityden.com/

the-hidden-power-of-border-radius-2 for more examples.

In CSS3, creating rounded corners can be as simple as border-
radius: 10px on a single div. No extra markup, no images, no
JavaScript.

Of course, while CSS3 continues to be developed and gain browser
support, it’s a little more complicated in real-world usage. But it’s still
really, really easy.

In your page, modify the blockquote rule to match the following:

blockquote {
margin: 0 0 0 112px;
padding: 10px 15px 5px 15px;
-moz-border-radius: 20px;

 -webkit-border-radius: 20px;
 border-radius: 20px;

border-top: 1px solid #fff;
 background-color: #A6DADC;
 word-wrap: break-word;
}

http://css-tricks.com/snippets/css/rounded-corners
http://blog.creativityden.com/the-hidden-power-of-border-radius-2
http://blog.creativityden.com/the-hidden-power-of-border-radius-2

GRAPHIC EFFECTS SANS GRAPHICS 53

The border-radius: 20px; declaration is the W3C standard syn-
tax for rounded corners, specifying that all four corners should be
rounded by 20 pixels. This syntax is currently supported by Opera,
Chrome, Safari 5, and IE 9. Firefox and Safari 4 and earlier use the
-moz-border-radius and -webkit-border-radius properties, respec-
tively. As explained in Chapter 1, browser vendors use these browser-
specific prefixes when the specification is still being worked out and
they think it may change. The non-prefixed version of the property
(in this case, plain border-radius) should always come last, so that
when browsers do support the non-prefixed property, it overrides the
earlier rules, which may use non-standard behavior from an older
version of the spec.

THE LOWDOWN ON THE border-radius PROPERT Y

The border-radius property is part of the Backgrounds and Borders module found at

www.w3.org/TR/css3-background. It’s shorthand for the properties specifying the rounding amount

of each of the four corners, in this order: border-top-left-radius, border-top-right-radius,

border-bottom-right-radius, border-bottom-left-radius. Mozilla’s properties for individual

corners have the non-standard syntax of -moz-border-radius-topleft and so forth.

You can write out all four values, with spaces in between, in one border-radius property, or just

use one value to round all four corners the same amount. Safari 4 and Safari on iOS 3 and earlier

don’t allow you to specify multiple corners in the shorthand border-radius property, other than

writing one value to specify all four at once.

See the “Creating ovals and circles with border-radius” sidebar for the syntax for elliptical curves

on corners. Also see www.owlfolio.org/htmletc/border-radius and http://muddledramblings.com/

table-of-css3-border-radius-compliance for more border-radius syntax details and examples.

Other than speech bubbles, you might want to use border-radius for:

Buttons; see http://blogfreakz.com/button/css3-button-tutorials and http://css-tricks.com/

examples/ButtonMaker

Tabs

Dialog boxes

Circular badges

Bar charts; seewww.marcofolio.net/css/animated_wicked_css3_3d_bar_chart.html

Smiley faces; see http://ryanroberts.co.uk/_dev/experiments/css-border-faces

N OT E : You don’t have

to actually declare a

border when us

border-radius. If

there is no border, the

browser just rounds

the background area.

www.w3.org/TR/css3-background
www.owlfolio.org/htmletc/border-radius
http://muddledramblings.com/table-of-css3-border-radius-compliance
http://muddledramblings.com/table-of-css3-border-radius-compliance
http://blogfreakz.com/button/css3-button-tutorials
http://css-tricks.com/examples/ButtonMaker
http://css-tricks.com/examples/ButtonMaker
www.marcofolio.net/css/animated_wicked_css3_3d_bar_chart.html
http://ryanroberts.co.uk/_dev/experiments/css-border-faces

CHAPTER 2: SPEECH BUBBLES54

TA B L E 2 . 2 border-radius browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes with -moz- Yes Yes, 5+;

4+ with -webkit-

Yes

With these three lines added, the corners are now rounded in all
browsers except IE 8 and earlier (Figure 2.4). These versions of
IE simply ignore the properties and keep the corners straight—no
harm done. This is a great example of progressive enhancement, as
explained in Chapter 1. Since this is a purely decorative effect, I see no
harm in IE users missing it. If you do, read on.

WO R K A R O U N D S FO R I E

If you really must have rounded corners in IE 8 and earlier, you can
use one of these scripts:

“PIE,” by Jason Johnston (http://css3pie.com), reads the border-
radius properties that are already present in your CSS and makes
them work in IE 6 and later. It also adds several other CSS3 effects
to IE.

“curved-corner,” by Remiz Rahnas (http://code.google.com/p/
curved-corner), also reads the border-radius properties out of
your CSS, but works only when all four corners have the same
border-radius.

N OT E : ee how IS

keep referring back to

Chapter 1? If you skipped

it, please go back and

read it now. There’s some

important stuff there.

F I G U R E 2 . 4 The border-
radius property applied

http://css3pie.com
http://code.google.com/p/curved-corner
http://code.google.com/p/curved-corner

GRAPHIC EFFECTS SANS GRAPHICS 55

“IE-CSS3,” by Nick Fetchak (http://fetchak.com/ie-css3), is based off
of curved-corner but also adds drop shadows in IE.

“DD_roundies,” by Drew Diller (http://dillerdesign.com/experi-
ment/DD_roundies), lets you round corners individually, but it
doesn’t read the values from your CSS; you have to manually set
the IE values separately.

Besides these IE-specific scripts, there are a number of rounded-
corner scripts and image-based techniques out there that were
developed before the border-radius property gained support, so
you could always go back to one of these older techniques for IE.
You can choose between dozens of options at www.smileycat.com/
miaow/archives/000044.php and http://css-discuss.incutio.com/wiki/
Rounded_Corners.

If you do use a script or images for IE, make sure to hide them from
other browsers by placing the script references or IE styles within
conditional comments, or by using Modernizr, both of which are
explained in Chapter 1. That way, only IE users get the performance
hit of using an old-school rounded-corner method, and non-IE users
get the faster, pure CSS version. You’ll have to decide if the extra work
and performance hit is worth having IE users see rounded instead of
straight corners.

Adding the Bubble’s Tail

With rounded corners, each comment box now looks more like a
bubble, but a speech bubble isn’t complete without a pointer or
arrow, commonly called a “tail,” pointing to the speaker. We can add
that tail without using any graphics. In fact, we can add it without
using any CSS3—the technique only uses properties and selectors
from CSS 2.

C R E AT I N G T R I A N G L E S O U T O F B O R D E R S

All we need to create a tail is a triangle, and you can create triangles
with pure CSS by using regular old borders. When two borders of a
box meet at a corner, the browser draws their meeting point at an
angle (Figure 2.5). If you reduce that box’s width and height to zero,
and give every border a thick width and a different color, you’ll end
up with the appearance of four triangles pushed together, each point-
ing in a different direction (Figure 2.6).

F I G U R E 2 . 5 By making
the top border a differ-
ent color, you can see
that borders meet at
corners at an angle.

F I G U R E 2 . 6 When a
box has no width or
height, each border
creates the appear-
ance of a triangle.

http://fetchak.com/ie-css3
http://dillerdesign.com/experiment/DD_roundies
http://dillerdesign.com/experiment/DD_roundies
http://css-discuss.incutio.com/wiki/Rounded_Corners
http://css-discuss.incutio.com/wiki/Rounded_Corners
www.smileycat.com/miaow/archives/000044.php
www.smileycat.com/miaow/archives/000044.php

CHAPTER 2: SPEECH BUBBLES56

Here’s what the HTML and CSS used to create Figure 2.6 look like:

<div class=”triangles”></div>

.triangles {
border-color: red green blue orange;

 border-style: solid;
 border-width: 20px;
 width: 0;
 height: 0;
}

What would happen if you made the top, left, and bottom borders
transparent instead of colored? Only the right border would show,
leaving the appearance of a left-pointing triangle (Figure 2.7):

<div class=”triangle-left”></div>

.triangle-left {
 border-color: transparent green transparent transparent;
 border-style: solid;
 border-width: 20px;
 width: 0;
 height: 0;
}

So, to sum that up, all you need to do to create a triangle using CSS
is give an element zero width and height, give it thick borders, and
make all but one of those borders transparent. You can vary the angle
of the triangle by making the widths of the borders different on dif-
ferent sides.

G E N E R AT I N G T H E TA I L

Now that you know how to make an image-free triangle, let’s add a
left-pointing triangle to the left side of each comment, pointing to
the commenter’s avatar. To do this, we could nest a span or div inside
each comment, and then transform this element into our triangle,
but let’s leave the HTML pristine and use CSS-generated content to
make the element we need appear.

Generated content is a CSS 2.1 technique where you place content
into your CSS to have it appear in your HTML. It’s useful for adding
things that you don’t want to manually hard-code into the HTML, like
numbers before headings or icons after links. It shouldn’t be used
for essential content that would be missed if the user couldn’t access
the CSS file.

T I P : emember, in CSS,

when you have four val-

ues in a single property,

like in the

property shown in the

code here, the first value

is for the top, the second

for the right, the third

for the bottom, and

the fourth for the left.

Think of going around

a clock clockwise.

F I G U R E 2 .7 Making
all but one of the bor-
ders transparent cre-
ates the appearance
of a single triangle.

GRAPHIC EFFECTS SANS GRAPHICS 57

To create generated content, you need to specify where the content is
to be inserted, using either the ::before or ::after pseudo-elements
(also written as :before and :after), and specify what content to
insert, using the content property.

WHAT’S WITH THE DOUBLE COLONS?

You may have noticed that I wrote the ::before and ::after pseudo-

elements with double colons instead of the single colons you may be used

to seeing. No, it’s not a typo. CSS3 changed the syntax for pseudo-elements

to use double colons, while pseudo-classes retain the single colons.

You can continue to use the single colon versions if you wish; they still

work just fine. In fact, since IE 8 and earlier don’t support the double-

colon versions, we’ll stick with the single colon versions in this book. You

could also use both as a grouped selector, such as .caption:before,

.caption::before { content: “Figure: “;}.

For instance, to insert the word “Figure” before every image caption
on your page, you could use the following CSS:

.caption:before {
content: “Figure: “;

}

This CSS would turn the HTML <p class=”caption”>Isn’t my cat
cute?</p> into this text when seen on the page:

Figure: Isn't my cat cute?
In the case of the speech-bubble tail we want to generate, all we want
to see are the borders of the generated content, not the content itself.
So, let’s generate a piece of invisible content: a non-breaking space.

The HTML entity for a non-breaking space is , but you can’t use
HTML entities within the content property. Instead, you need to use
the hexadecimal part of the character’s Unicode code point (or refer-
ence). That may sound really confusing and difficult and science-y,
but don’t be scared—there are lots of handy charts online that allow
you to look up this kind of stuff.

For instance, at www.digitalmediaminute.com/reference/entity you
can see 252 little boxes, each showing one of the allowed entities in
(X)HTML. In the “Filter entities by keyword” box, type “non-breaking

T I P : Another useful

tool is the

 onverter at

http://rishida.net/tools/

conversion, where you

can put in the charac-

ter or its HTML entity

name and convert it

into a bunch of different

formats, including its

hexadecimal code point.

www.digitalmediaminute.com/reference/entity
http://rishida.net/tools/conversion
http://rishida.net/tools/conversion

CHAPTER 2: SPEECH BUBBLES58

space.” 251 of the boxes will disappear, leaving you with one box
showing , the HTML entity name. Position your cursor over
the box (Figure 2.8). Two other codes will appear: its numerical code
(in this case,) and its Unicode code (u00A0). You just want the
hexadecimal part of the Unicode code, which is the part after the “u.”
Copy the text “00A0” onto your clipboard.

Now we’re almost there; but even though we now have the Unicode
code we need, we can’t put it straight into the content property, like so:

blockquote:after {
 content:”00A0”;
}

If we did this, the browser would quite logically make the text “00A0”
show up, instead of the non-breaking space. To tell the browser that
we’re putting in a special character code, we need to escape the code.
If you’re a programmer, you’ll be familiar with this term, but for the
rest of us, all it means is that you have to put a backslash in front of
the code. This alerts the browser that what follows the slash is not to
be taken as literal text, but is instead a code for something else.

With the backslash, we finally have all the correct characters and
punctuation needed to insert a simple non-breaking space:

blockquote:after {
 content:”\00A0”;
}

F I G U R E 2 . 8 Use the
XHTML Character Entity
Reference to look up the
Unicode code points
of various entities.

N OT E : Unicode code

points are often written

with a prefix of U+”

instead of just “u.” In

either of these cases, the

part you want to include

in the content property

is just the

hexadecimal part that

comes after the prefix.

GRAPHIC EFFECTS SANS GRAPHICS 59

Once you do this, the page will look exactly the same; the non-breaking
space is invisible, of course. Let’s add the borders around it to make it
show up. We also need to set its width and height to zero and make it
display as a block element so we can move it around to place the tail
against the side of the speech bubble:

blockquote:after {
content: “\00a0”;
display: block;
width: 0;
height: 0;
border-width: 10px 20px 10px 0;
border-style: solid;
border-color: transparent #000 transparent transparent;

}

If we had made all four borders the same width, we’d end up with a
rather fat triangle, like the one shown in Figure 2.7. To make the tri-
angle a little longer and thinner, we’ve set the top and bottom borders
to only 10 pixels, and the left border is nonexistent at zero pixels. The
right border—the one we use to create the appearance of a left-point-
ing triangle—is a nice, wide 20 pixels. All the borders except the right
one are transparent; here I’ve set the right border’s color to black tem-
porarily just so we can see it in order to place it correctly (Figure 2.9).

The triangle is currently placed right after the blockquote’s content—
not the right spot for a speech bubble’s tail. You can correct this by
moving it with absolute positioning. First, add position: relative;
to the blockquote rule; this establishes it as the reference point for
the absolute element’s positioning:

blockquote {
 position: relative;

margin: 0 0 0 112px;
padding: 10px 15px 5px 15px;

 -moz-border-radius: 20px;
 -webkit-border-radius: 20px;
 border-radius: 20px;

border-top: 1px solid #fff;
 background-color: #A6DADC;
 word-wrap: break-word;
}

N OT E : The :before

pseudo-element would

have worked just as

well as :after in this

case. e’re going to

be moving it from its

default position regard-

less, as you’ll soon see.

F I G U R E 2 .9 The black
right border creates
the appearance of a
left-pointing triangle.

CHAPTER 2: SPEECH BUBBLES60

Then, add the absolute positioning to the generated content, along
with top and left values:

blockquote:after {
content: “\00a0”;
display: block;
position: absolute;
top: 20px;
left: -20px;
width: 0;
height: 0;
border-width: 10px 20px 10px 0;
border-style: solid;
border-color: transparent #000 transparent transparent;

}

You can set the top value to whatever you want; just make sure it’s
equal to or greater than the border-radius value so it lands on the
straight edge of the box, below the corner curve. The left value
should be a negative value in order to pull the triangle to the left, and
it should match the width of the triangle. In this case, the width of
the triangle is 20 pixels, because that’s the width of the right border,
so we’re using a left value of –20px. This places the triangle right up
against the left edge of the comment box (Figure 2.10).

It’s possible that a comment might be so short that the tail hangs off
the bottom, as seen in the second comment in Figure 2.10. To fix this,
add min-height: 42px; to the blockquote rule.

blockquote {
 position: relative;
 min-height: 42px;

margin: 0 0 0 112px;
padding: 10px 15px 5px 15px;

 -moz-border-radius: 20px;
 -webkit-border-radius: 20px;
 border-radius: 20px;

border-top: 1px solid #fff;
 background-color: #A6DADC;
 word-wrap: break-word;
}

F I G U R E 2 .1 0 Absolute
positioning places
the triangle where
we want it.

GRAPHIC EFFECTS SANS GRAPHICS 61

Now that the triangle isn’t layered over the blockquote, we can
change its color to match the blockquote:

blockquote:after {
 content: “\00a0”;
 display: block;
 position: absolute;
 top: 20px;
 left: -20px;
 width: 0;
 height: 0;

border-1width: 10px 20px 10px 0;
 border-style: solid;
 border-color: transparent #A6DADC transparent

 transparent;
}

This creates a seamless appearance between the bubble and the tail
parts of each speech bubble (Figure 2.11).

WO R K A R O U N D S FO R I E

Our tail shows up fine in IE 8 and later versions, but IE 7 and earlier
versions don’t support generated content, so they don’t see the tail. I
think this is fine in this case, as there’s no reason users of those brows-
ers would see the plain rectangles and think, “Hey wait a second! Why
isn’t there a little triangle sticking out of each comment block?”

To add tails in IE 7 and earlier, you’d need to manually add another
element to the HTML of each comment, such as an empty span, and
turn this element into the triangle.

N OT E : The page

with all the changes

to this point is name

in the exercise files

that you downloaded

for this chapter.

F I G U R E 2 .1 1 Each tail
is now colored and
placed correctly.

CHAPTER 2: SPEECH BUBBLES62

Semitransparent Backgrounds
with RGBA or HSLA

There’s nothing more that we have to do to create the appearance
of a speech bubble—we’ve got the rounded corners and the tail—but
it would be nice to add a little more depth and visual richness with
some extra graphic details.

One great way to add depth is to make backgrounds semitransparent
(also called alpha transparency). By letting a little bit of the page back-
ground show through, you create more of a layered appearance, as if
the semitransparent element is floating over the background. I think
this look is especially well-suited to speech bubbles, because, well,
they’re bubbles—light and airy.

Before CSS3, you could create semitransparent backgrounds using an
alpha-transparent PNG as a tiling background image. Using a back-
ground image has the disadvantage of adding another hit to your
server, making pages load a little slower for your users. Performance
is impacted even more if you need to support IE 6, since it needs a
script to be able to understand alpha-transparent PNGs. Plus, you
can’t use a background image on a border, so you wouldn’t be able to
make the speech bubble’s tail semitransparent. It would look pretty
weird for the body of the bubble to be semitransparent and the tail to
be totally opaque.

C S S 3 ’ S R G B A A N D H S L A SY N TA X

Luckily, in CSS3 we have both RGBA and HSLA to turn to. Both are
methods for specifying a color and its level of transparency at the
same time. RGBA stands for red-green-blue-alpha (for alpha trans-
parency) and HSLA stands for hue-saturation-lightness-alpha.

We could specify the shade of blue that we’re using as the speech bub-
ble’s background using any of these syntaxes:

Hexadecimal: #A6DADC

RGB: 166, 218, 220

RGBA: 166, 218, 220, 1

HSL: 182, 44%, 76%

HSLA: 182, 44%, 76%, 1

GRAPHIC EFFECTS SANS GRAPHICS 63

They all get us to the same exact color, just through different routes.
It’s a “you say toe-may-toe, I say toe-mah-toe” sort of thing.

In the RGBA syntax, the first three values are the amounts of red,
green, and blue, either from 0–255 or 0%–100%. (You’ll most often see
the 0–255 values, not the percentages.) In the HSLA syntax, the first
three values are the hue value, from 0 to 360; the percentage level of
saturation; and the percentage level of lightness. In both RGBA and
HSLA, the fourth value is the opacity level, from 0 (completely trans-
parent) to 1 (completely opaque).

You can use most graphic editors to determine the correct red,
green, and blue values needed to create your chosen color. Use the
color picker to choose a color, and in the color dialog box or picker
window, most graphic editors will tell you that color’s hexadecimal
code as well as RGB values (Figure 2.12). Finding HSL values can be a
little trickier, as not all image-editing software uses HSL; for instance,
Photoshop uses HSB (also called HSV), which is similar, but not quite
the same. If you’re on a Mac running Snow Leopard, check out the
free app Colors by Matt Patenaude (http://mattpatenaude.com),
which lets you pick colors from anywhere on your screen and can dis-
play values in HSLA as well as other syntaxes. If you’re not on a Mac, I
recommend you use one of the online HSL color picker or converter
tools (see the “Online color tools” sidebar).

N OT E : CSS3 a

an opacity

but it makes the entire

element semitrans-

content, instead of

just the background.

F I G U R E 2 .1 2

Photoshop’s Color
Picker dialog
box shows the
equivalent RGB
values for the
chosen hex color.

http://mattpatenaude.com

CHAPTER 2: SPEECH BUBBLES64

ONLINE COLOR TOOLS

There are many free web-based color picker and converter tools that

you can find through Googling, but here are a couple that are particu-

larly handy for working with RGB and HSL values:

The color converter tool at http://serennu.com/colour/hsltorgb.php

allows you to convert color values you already have into hex, RGB,

and HSL syntaxes.

The Doughnut Color Picker at www.workwithcolor.com/doughnut-

color-picker-01.htm lets you both pick and convert colors. The picker

uses HSL, but gives the hex and RGB equivalents, and lets you input

colors in any of the three syntaxes.

Some browser-based color pickers make finding HSL or RGB values
even easier and faster. I’m a big fan of the Rainbow extension for
Firefox (https://addons.mozilla.org/en-US/firefox/addon/14328). After
you install the extension, you can tell it which syntax to use to display
color values (Figure 2.13). Then, when you use its Inspector tool to
choose colors from a web page, it gives you the option to automatically
copy those values to your clipboard (Figure 2.14), and you can then
easily paste them into your CSS. Note that, as of this writing, the exten-
sion doesn’t include the “A” part of either RGBA or HSLA, so you’ll have
to add that part in by hand. But I think you can handle all that typing.

F I G U R E 2 .1 3 In the options for the
Rainbow extension, set the “Display
color values in” option to “Hsl.”

F I G U R E 2 .1 4 Using Rainbow’s
Inspector tool, you can click
on a color to display and
copy its color code.

http://serennu.com/colour/hsltorgb.php
www.workwithcolor.com/doughnutcolor-picker-01.htm
www.workwithcolor.com/doughnutcolor-picker-01.htm
https://addons.mozilla.org/en-US/firefox/addon/14328

GRAPHIC EFFECTS SANS GRAPHICS 65

R G B A V E R S U S H S L A

The main reason I recommend the Rainbow Firefox extension over
some other color picker extensions is that many others don't include
HSL values, while Rainbow does, and I prefer HSLA over RGBA.

I’m in the minority here. Many more people use RGBA than HSLA,
but I think that’s mainly because most people haven’t heard of HSLA.
It’s a shame, because the majority of people who use HSLA find it
more intuitive.

With RGB and RGBA values, it’s hard to tell at a glance what the color
is going to be. If you take a minute to study a whole RGB or RGBA
value, such as rgb(166,218,220), you can get a fair idea of the result-
ing color, based on which of the three component color values (red,
green, or blue) are highest. But I’m not a big fan of taking that minute
to parse it out while I’m trolling through my style sheet trying to track
down where some mysterious color is coming from. And even after
I determine that an RGB value is producing a greenish-blue hue, for
instance, it’s hard to tell how muted or dark that greenish-blue is by
looking at only its red, green, and blue values.

HSL AND HSL A HUE VALUES CHEAT SHEET

If you’re going to use HSLA, it’s helpful to memorize the hue values of a

few key colors (or at least approximately where they are between 0 and

360, so you can tweak your way to the shade you want).

0 or 360 = red

30 = orange

60 = yellow

120 = green

180 = cyan

240 = blue

270 = purple

300 = magenta

To get black in HSL and HSLA, just set the lightness value to zero per-

cent. For white, set the lightness value to 100 percent. In both cases, the

hue and saturation values can be whatever you want.

To get gray in HSL and HSLA, just set the saturation value to zero per-

cent. The lightness value will control the shade of the gray, and the hue

value is irrelevant.

CHAPTER 2: SPEECH BUBBLES66

Another problem with RGB and RGBA is that if you want to tweak a
color—make it a little darker or brighter or greener—you have to guess
at how to change each of the values to get to the hue you want. In web
design, it’s common to use multiple shades of the same hue in differ-
ent places in the page, such as a brightened version of a color on the
current tab in a nav bar. But with RGB, different shades of the same
hue don’t necessarily have very similar color values. For instance, a
just slightly darker version of the shade of blue we’ve been working
with would have an RGB value of 155, 209, 211 instead of the original
166, 218, 220. All three numbers have to change to produce a very
slight shift in darkness.

With HSL and HSLA, you don’t have to add amounts of red, green,
and blue to get a specific hue, but instead set that hue as one specific
number. All you have to do is remember that both 0 and 360 equal
the same shade of pure red. As you increase the hue value from 0,
you simply move through the rainbow from red to purple and then
back around to red again, as if you were going around a color wheel
(Figure 2.15).

1 8 0 °

4 5 °

9 0 °

1 3 5 °2 2 5 °

270°

3 1 5 °

0 ° / 3 6 0 °F I G U R E 2 .1 5

The 360 hue values in
the HSL color syntax

GRAPHIC EFFECTS SANS GRAPHICS 67

THE LOWDOWN ON RGBA AND HSL A

RGBA and HSLA are part of the Color module found at www.w3.org/TR/css3-color. Both allow you to

set a color and its level of transparency at the same time.

In the RGBA syntax, the first three values are the amounts of red, green, and blue, either from 0–255

or 0%–100%. In the HSLA syntax, the first three values are the hue value from 0 to 360, the percent-

age level of saturation, and the percentage level of lightness. In both RGBA and HSLA, the fourth

value is the opacity level from 0 (completely transparent) to 1 (completely opaque).

Other than ghostly bubble backgrounds, you might want to use RGBA or HSLA for:

Drop shadows that tint the background beneath them (you’ll learn how to do this later in

this chapter)

Gradient highlights on buttons or any other objects (again, you’ll learn how to do this soon)

Tinting the chosen link in a nav bar a slightly lighter or darker shade of the main color

Semitransparent caption boxes laid over photos; see http://css-tricks.com/text-blocks-over-

image and www.htmldrive.net/items/show/381/Snazzy-Hover-Effects-Using-CSS3.html

Semitransparent dialog boxes, modal windows, or tooltips laid over content

TA B L E 2 . 3 RGBA and HSLA browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes Yes Yes Yes

Once you have the hue you want, you can then adjust its saturation
if you want it duller or brighter, or adjust its lightness if you want it
darker or lighter. It’s easy to get multiple shades of the same color, or
to tweak the color’s hue just a little bit in one direction. Once you’ve
worked with HSLA for a while and are more familiar with what each
hue value computes out to, it’s easier to tell at a glance what color
you’re going to get when you’re glancing through the HSLA values in
your style sheets.

The bottom line is this: RGBA and HSLA both have the same browser
support and produce the same colors. I’m using HSLA throughout
this book because it’s more intuitive to me, but if you find RGBA eas-
ier, it’s perfectly fine to use it instead.

www.w3.org/TR/css3-color
www.htmldrive.net/items/show/381/Snazzy-Hover-Effects-Using-CSS3.html
http://css-tricks.com/text-blocks-overimage
http://css-tricks.com/text-blocks-overimage

CHAPTER 2: SPEECH BUBBLES68

C R E AT I N G S E M I T R A N S PA R E N T S P E EC H B U B B L E S

Now that we’ve gotten all that syntax out of the way, we can switch the
speech bubbles’ background color from hexadecimal to HSLA nota-
tion and make them semitransparent.

The speech bubbles’ background color is currently set to #A6DADC.
We can figure out the HSLA equivalent using the Rainbow extension.
Just open your speech-bubble page in Firefox, and use the Rainbow
Inspector to click on the speech bubble background color. It will show
you that the HSL value is hsl(182, 44%, 76%). Copy this value, go back
to your code editor, and paste it over the current hexadecimal back-
ground color:

blockquote {
 position: relative;
 min-height: 40px;

margin: 0 0 0 112px;
padding: 10px 15px 5px 15px;

 -moz-border-radius: 20px;
 -webkit-border-radius: 20px;
 border-radius: 20px;

border-top: 1px solid #fff;
 background-color: hsl(182,44%,76%);
 word-wrap: break-word;
}

If you save and refresh the page after this change, it will look exactly
the same. You haven’t changed the color yet—just changed the syntax
for specifying it.

Now we’ll modify this new syntax to make the speech bubbles semi-
transparent. Change background-color: hsl(182,44%,76%); to
background-color: hsla(182, 44%,76%,.5); . Make sure to add the
“a” of “hsla”!

You also want to change the tail to match. Copy and paste the HSLA
value over the hexadecimal value in the border-color declaration:

blockquote:after {
content: “\00a0”;
display: block;
position: absolute;
top: 20px;
left: -20px;
width: 0;
height: 0;
border-width: 10px 20px 10px 0;

N OT E : Having spaces

after the commas

between the three HSL

values is com

optional—it works

the same way with

or without spaces.

(I took them out.)

N OT E : I’ve written

the alpha value as

“.5,” but “0.5” is also

perfectly fine.

GRAPHIC EFFECTS SANS GRAPHICS 69

 border-style: solid;
 border-color: transparent hsla(182,44%,76%,.5)

 transparent transparent;
}

Save and refresh the page in your browser. You can now see the page
background pattern showing through the speech bubbles slightly, as
well as each commenter’s avatar showing through the little bit of the
tail that overlaps each picture (Figure 2.16).

WO R K A R O U N D S FO R I E

You have a few options for working around the lack of HSLA/RGBA
support in IE 8 and earlier.

Provide a replacement solid background color (in hexadecimal,
RGB, or HSL syntax). If you declare the solid background color
before the HSLA/RGBA version, using the background shorthand
property on either both the colors or just the HSLA/RGBA one, IE
8 and earlier will use it and correctly ignore the HSLA/RGBA one.
But if you use the background-color property instead of back-
ground to declare the HSLA/RGBA color, IE 7 and 6 won’t use the
solid color; they try to apply the HSLA/RGBA color and can’t, so
they display no color at all. In some pages, where the text is still
readable even without a background color behind it, this would be
acceptable. In those cases where it’s not, and where you can’t use
the background shorthand property, you would need to feed IE 7
and earlier the solid background color in a rule that only IE can
read. See Chapter 1 for your IE-feeding options.

Tile a tiny semitransparent PNG image as the background image.
This has the advantage over the first option of actually making the
background semitransparent, instead of opaque. It works in IE 8
and 7, but not IE 6 and earlier, since those versions don’t support
alpha-transparent PNGs. To work around this, you could use IE’s
AlphaImageLoader filter (or one of the many IE transparency scripts

F I G U R E 2 .1 6 Each speech
bubble’s background is the
same shade of blue, but
now semitransparent.

T I P : You can use server-

side programming to

generate the PN s for

you. See http:

me/2009/02/bulletproof-

cross-browser-rgba-

backgrounds for a PHP

script that

them based on the R A

values in your CS .

http://leaverou.me/2009/02/bulletproofcross-browser-rgbabackgrounds
http://leaverou.me/2009/02/bulletproofcross-browser-rgbabackgrounds
http://leaverou.me/2009/02/bulletproofcross-browser-rgbabackgrounds
http://leaverou.me/2009/02/bulletproofcross-browser-rgbabackgrounds

CHAPTER 2: SPEECH BUBBLES70

that makes use of the filter), feed IE 6 a solid background color, or
feed IE 6 a GIF or PNG8 image. But all of this is a lot of extra work
and could have a big impact on the performance of your pages—the
AlphaImageLoader filter is horribly slow and an image is another
HTTP request. (Plus, in our case, we couldn’t use it on the speech
bubbles’ tails, since they are just borders and don’t have background
images.) I don’t recommend using a PNG background image unless
you don’t need to worry about IE 6 and thus won’t be providing any
workarounds for its lack of alpha-transparent PNG support.

Use IE’s Gradient filter, which works since version 5.5, and allows
semitransparent colors (using its own proprietary syntax, of
course). Just set both the starting and ending colors to the same
color so you don’t create the appearance of a gradient.

I recommend either the first or third option. The third more closely
resembles the appearance we’re going for, since the background will
be semitransparent instead of solid. However, it’s worth noting that
the Gradient filter can do strange things to the anti-aliasing of the ele-
ment’s text and make it look a little uneven (peek ahead at Figure 2.17).
You’ll have to decide if the less pretty text is worth the more pretty
background. Also, adding the filter will make the generated content tail
disappear in IE 8 (it never appeared in 7 and 6 to begin with). I can’t give
you any explanation for this—it’s just one of those weird IE bugs.

In this case, I say let’s go for the semitransparent background using the
filter. Since we don’t have rounded corners in IE to create the speech-
bubble appearance, I don’t mind losing the speech bubble’s tail.

We could add the filter right inside the blockquote rule—non-IE
browsers will just ignore it—but as discussed in Chapter 1, it’s always
nice to keep hacks and workaround separate from the standard rules.
To keep the filters separate, we should either create a separate IE
sheet, or use the conditional comments html tag trick described in
Chapter 1. Let’s use the html tag trick.

Go to the opening html tag of the page, and change it to the following
HTML:

<!--[if lt IE 7]><html lang=”en” class=”ie6”><![endif]-->
<!--[if IE 7]><html lang=”en” class=”ie7”><![endif]-->
<!--[if IE 8]><html lang=”en” class=”ie8”><![endif]-->
<!--[if IE 9]><html lang=”en” class=”ie9”><![endif]-->
<!--[if gt IE 9]><html lang=”en”><![endif]-->
<!--[if !IE]>--><html lang=”en”><!--<![endif]-->

N OT E : he P E script

mentioned earlier can

also be used to make

RGBA work in E, but

only in limited contexts.

See http://css3pie.

com/documentation/

supported-css3-features

for more information.

F I G U R E 2 .1 7

Before (top) and after
(bottom) the Gradient
filter is applied in IE 8.
With the filter, the
background color is
semitransparent, but
the anti-aliasing of
the text is now a little
uneven-looking.

T I P : If you don’t want

to type all this by hand (I

don’t blame you), o

html from this chapter’s

exercise files, and copy

and paste it from there.

http://css3pie.com/documentation/supported-css3-features
http://css3pie.com/documentation/supported-css3-features
http://css3pie.com/documentation/supported-css3-features

GRAPHIC EFFECTS SANS GRAPHICS 71

Now we can create one rule for IE 5.5, 6 and 7, and another rule for
IE 8, since its filter syntax is a little different than that used in earlier
versions of IE. Add the IE 7 and earlier rule first:

.ie6 blockquote, .ie7 blockquote {
 background: none;
 filter: progid:DXImageTransform.Microsoft.gradient
 (startColorstr=#99A6DADC, endColorstr=#99A6DADC);
 zoom: 1;
}

The Gradient filter simply declares a starting and ending color, both
the same. The color values look strange, though, don’t they? They’re
not your standard six-digit hexadecimal codes. The first two digits
are the alpha transparency value. You can use any hexadecimal value
between 00 and FF, with 00 being transparent and FF being opaque.
The last six digits are the standard hexadecimal code for a color. So,
the color #99A6DADC sets the alpha transparency to 99, the hexadeci-
mal equivalent of the .6 level of transparency we’re using in HSLA,
and the color to A6DADC, the same blue we’ve been using all along.

In addition to applying the filter, this IE 7 and earlier rule removes the
background color, which would override the filter. Also, IE 6 and ear-
lier need to have hasLayout triggered on the blockquotes to make the
filter work, which zoom: 1; accomplishes.

CONVERTING HSL A AND RGBA
TO IE’S GR ADIENT FILTER

To use the exact same level of transparency in the IE filter as the HSLA

notation, you need to multiply the level of HSLA transparency value, .6 in

this case, with 255, and then convert this into hex. Robert Nyman explains

how to do this at http://robertnyman.com/2010/01/11/css-background-

transparency-without-affecting-child-elements-through-rgba-and-filters.

A much easier way to do this is to use Michael Bester’s “RGBa & HSLa CSS

Generator for Internet Explorer” at http://kimili.com/journal/rgba-hsla-

css-generator-for-internet-explorer. Put in an RGBA or HSLA value and it

will automatically convert it to the Gradient filter equivalent.

N OT E : T

in the filter value

are there just to make

it easier to read. You

can add or remove

line breaks within it

without affecting how

the code functions.

N OT E : Un

hasLayout is important

when working w E. If

you need a refresher on

this strange

see Ingo hao’s article

On having layout” at

www.satzansatz.de/cssd/

onhavinglayout.html.

http://robertnyman.com/2010/01/11/css-backgroundtransparency-without-affecting-child-elements-through-rgba-and-filters
http://robertnyman.com/2010/01/11/css-backgroundtransparency-without-affecting-child-elements-through-rgba-and-filters
http://kimili.com/journal/rgba-hslacss-generator-for-internet-explorer
http://kimili.com/journal/rgba-hslacss-generator-for-internet-explorer
www.satzansatz.de/cssd/onhavinglayout.html
www.satzansatz.de/cssd/onhavinglayout.html

CHAPTER 2: SPEECH BUBBLES72

IE 8 doesn’t need the background color removed, as it correctly
ignores the HSLA background color on the main blockquote rule. It
also doesn’t need hasLayout triggered. But, it does have a slightly dif-
ferent syntax for filter properties. Add the following rule for IE 8:

.ie8 blockquote {
 -ms-filter: “progid:DXImageTransform.Microsoft.gradient
 (startColorstr=#99A6DADC, endColorstr=#99A6DADC)”;
}

The differences in the filter syntax are that it’s called -ms-filter
instead of filter, and the value of the -ms-filter property is put in
quotation marks. This syntax is more in line with the CSS specifica-
tions and how other browsers designate their proprietary properties.

Image-free Gradients

We can enhance the speech bubbles’ backgrounds even further by
giving each a subtle gradient to make them appear more rounded
and three-dimensional. CSS3 allows you to create gradients with-
out images, speeding up your development time and decreasing
page-loading times, just as our image-free rounded corners can do.
CSS-generated gradients also have the advantage of being able to
scale with their containers in ways that image gradients can’t, making
them more versatile.

Unfortunately, CSS3 gradients are still very much in development at
the time of this writing; their syntax is laid out only in a W3C editor’s
draft, not a more finalized working draft or candidate recommenda-
tion. Thus, be aware that the syntax for gradients is more likely to
change than most of the CSS I’ll describe in this book. Still, I think
it’s fine to add CSS that is a little experimental if you’re using it in a
very limited manner; non-supporting browsers won’t be harmed by
its lack, and supporting browsers won’t be harmed if the syntax later
changes. The (unlikely) worst-case scenario is that the syntax will
totally change, making the gradients fail to appear in all browsers. I
think I can live with this.

You can create both linear (straight) gradients and radial (circular or
elliptical) gradients; we’re just going to focus on linear gradients here.
There is no gradient property; you specify a gradient using the linear-
gradient or radial-gradient function as the value for any property that
allows an image value, such as background-image and list-style image

GRAPHIC EFFECTS SANS GRAPHICS 73

(though Firefox currently supports it only on background-image). When
you specify a linear gradient, you tell the browser its starting point,
angle, and starting and ending colors. You can also add extra colors in
between the starting and ending colors and specify the exact position of
each color along the line of the gradient.

This sounds simple enough, but unfortunately, Firefox and Webkit
(the only browsers that currently support gradients) differ on the syn-
tax required to feed the browser this information; Firefox matches
the official W3C syntax, and Webkit uses a very different (and more
complicated) syntax that they developed first. Not only that, but even
within each single syntax there are many variations on how you can
specify the same gradient. It can get pretty confusing. To start off sim-
ply, let’s first apply a simple linear gradient to the speech bubbles to
see a real example, before diving into the details of the full syntax.

T H E F I R E FOX A N D W 3 C SY N TA X

Firefox’s syntax matches the official syntax being developed by the
W3C and is generally easier to understand and use, so we’ll start with
the gradient for Firefox.

First, add a linear gradient for Firefox in the background-image prop-
erty of the blockquote rule, using the -moz-linear-gradient function:

blockquote {
 position: relative;
 min-height: 40px;

margin: 0 0 0 112px;
padding: 10px 15px 5px 15px;

 -moz-border-radius: 20px;
 -webkit-border-radius: 20px;
 border-radius: 20px;

border-top: 1px solid #fff;
 background-color: hsla(182,44%,76%,.5);

background-image: -moz-linear-gradient(
hsla(0,0%,100%,.6),
hsla(0,0%,100%,0) 30px
);

 word-wrap: break-word;
}

This specifies a starting color (hsla(0,0%,100%,.6)), ending color
(hsla(0,0%,100%,0)), and the position of the ending color (30px).
Because we haven’t specified any starting point for the gradient or
its angle, Firefox will simply use the default values, which makes

N OT E : The line breaks

in this gradient func

tion are there just to

make it easier to read.

Just like with any piece

of CSS, you can add

or remove line breaks

within it without affect

ing code functionality.

CHAPTER 2: SPEECH BUBBLES74

the gradient start at the top of the box and run straight down. (If we
did want to specify a starting point and/or angle, we’d do it at the
start of the function. See “The lowdown on linear gradients” for the
exact syntax.)

The starting color is white at 60 percent opacity, and the ending color
is white at zero percent opacity (completely transparent). Laying
semitransparent white over the background color creates a tint of
whatever that background color is. In this case, it makes the gradient
appear to be very light blue at the top and then fade away to nothing
(Figure 2.18). We could have used an actual shade of light blue, but
using semitransparent white in HSLA or RGBA is much more flex-
ible. If we were to later change the color of the speech bubbles’ back-
grounds to orange, for instance, we’d have to also change the light blue
gradient to light orange. But since it’s white, it will always be a tint of
whatever the background color is. Sticking with semitransparent white
and black is the smartest way to create tints and shades of colors.

Right after the ending color value, there’s a space and then a value of
30px. This tells Firefox that you want it to place the ending color 30
pixels down the gradient. The gradient will run from the top of the
box down 30 pixels, and then the ending color of the gradient will
fill the rest of the vertical space. Since the ending color is completely
transparent, it creates the appearance that the gradient covers only
the top 30 pixels of the speech bubble.

That’s all you need to create the gradient in Firefox. Normally, I
would tell you to copy and paste the background-image declaration
and remove the -moz- bit from the second declaration to add the
non-browser-specific version at the end. But in this case, the official
syntax is still so early in its development that I think it’s best to leave
it off and wait for it to become more finalized. We’ll stick with just the
Firefox syntax, and add the Webkit syntax now.

F I G U R E 2 .1 8 A gradient
over the background
makes the speech
bubbles look more
three-dimensional.

GRAPHIC EFFECTS SANS GRAPHICS 75

T H E W E B K I T SY N TA X

For Webkit-based browsers, add another background-image declara-
tion to the blockquote rule, this time containing the -webkit-gradi-
ent function:

blockquote {
position: relative;
min-height: 40px;
margin: 0 0 0 112px;
padding: 10px 15px 5px 15px;
-moz-border-radius: 20px;
-webkit-border-radius: 20px;
border-radius: 20px;
border-top: 1px solid #fff;
background-color: hsla(169,41%,76%,.5);
background-image: -moz-linear-gradient(hsla(0,0%,
¬ 100%,.6), hsla(0,0%,100%,0) 30px);
background-image: -webkit-gradient(linear,

 0 0, 0 30,
 from(hsla(0,0%,100%,.6)),
 to(hsla(0,0%,100%,0))
);

 word-wrap: break-word;
}

As you can see, the Webkit syntax is very different—and more
complicated.

R ADIAL GR ADIENTS

We’re not covering radial gradients here, but you can learn more about

them in these articles:

“CSS gradient syntax: comparison of Mozilla and WebKit

(Part 2),” by Peter Gasston (www.broken-links.com/2009/11/30/

css-gradient-syntax-comparison-of-mozilla-and-webkit-part-2)

“css gradients in Firefox 3.6,” by Alix Franquet (http://hacks.mozilla.

org/2009/11/css-gradients-firefox-36)

www.broken-links.com/2009/11/30/css-gradient-syntax-comparison-of-mozilla-and-webkit-part-2
www.broken-links.com/2009/11/30/css-gradient-syntax-comparison-of-mozilla-and-webkit-part-2
http://hacks.mozilla.org/2009/11/css-gradients-firefox-36
http://hacks.mozilla.org/2009/11/css-gradients-firefox-36

CHAPTER 2: SPEECH BUBBLES76

THE LOWDOWN ON LINEAR GR ADIENTS

The gradient functions are part of a draft of the Image Values module; this draft is found at http://

dev.w3.org/csswg/css3-images/#gradients-,but ultimately the finalized module can be found at

www.w3.org/TR/css3-images.

You specify a gradient using the linear-gradient or radial-gradient function as the value for

any property that allows an image value. Figure 2.19 shows a diagram of a linear-gradient func-

tion with every possible piece of the gradient syntax included.

linear-gradient(0 40px 270 deg, #000, #fff 60px, #000033 80%)

horizontal position

vertical position

starting color

middle color

distance from starting point

ending color

distance from
starting point

starting point angle color-stop color-stop color-stop

F I G U R E 2 .1 9 All the possible pieces of a linear gradient function, shown over the gradient
it would produce.

You don’t need to include all of the pieces shown in Figure 2.19. The important points to remember are:

All you need for a gradient to work are the two colors (in any syntax). The rest of the pieces

shown in Figure 2.19 are optional and just uses the default values if you leave them out.

If you don’t specify any positions for the colors or the gradient’s angle, the gradient will run from

top to bottom.

http://dev.w3.org/csswg/css3-images/#gradients-
http://dev.w3.org/csswg/css3-images/#gradients-
www.w3.org/TR/css3-images

GRAPHIC EFFECTS SANS GRAPHICS 77

You can specify the starting point for the gradient at the beginning of the function, using either

keywords (like center) or numbers (like 20px or 60% or 1em), which can be negative. If you use

numbers, the first value is how far across the box the gradient starts (the x-axis or horizontal

starting point position) and the second value is how far down the box the gradient starts (the

y-axis or vertical starting point position).

After the starting point (if present), you can specify the angle at which the gradient will run. The

angle is measured between a horizontal line and the gradient line, going counterclockwise. For

instance, 0deg produces a left-to-right gradient, 90deg goes bottom to top, 180deg goes right to

left, and 270deg goes top to bottom. You can also use negative values.

Each color-stop includes a color (in any syntax) and, optionally, a point where that color should

be placed along the gradient’s line. The value is measured from the starting point of the gradi-

ent, which may not necessarily be the edge of the box (as is the case in Figure 2.19, where the

gradient starts 40 pixels down from the top edge of the box).

Since gradients placed in the background-image property are essentially browser-generated

images, you can use other CSS background properties to further control them, just like you would

any other background image. For instance, you can use the new CSS3 background-size property

to control the gradient’s size and background-repeat to control its tiling.

Other than adding a highlight, you may want to use CSS3 gradients for:

Making something’s surface appear to be rounded, like a button; see www.webdesigner-

wall.com/tutorials/css3-gradient-buttons and http://blog.brandoncash.net/post/525423850/

sexy-css-buttons

Make something appear to be shiny, like metal, glass, or a CD

Creating the appearance of a reflection; see www.broken-links.com/2010/03/22/

create-a-studio-style-backdrop-with-css3

Creating a vignette effect, where the edges of an image or box are gradually dark-

ened, like in an old photograph; see http://sickdesigner.com/index.php/2010/html-css/

css3-vignette-a-wicked-cool-technique

Fading in or out a background image by layering it with a gradient; see http://atomicrobotde-

sign.com/blog/htmlcss/make-the-thinkgeek-background-effect-using-css3

Equal-height columns; see http://aext.net/2010/08/css3-sidebar-full-height-background-color

TA B L E 2 . 4 Gradients browser support

IE FIREFOX OPERA SAFARI CHROME

No Yes, 3.6+,

with -moz-

No Yes,

with -webkit-

Yes,

with -webkit-

www.webdesignerwall.com/tutorials/css3-gradient-buttons
www.webdesignerwall.com/tutorials/css3-gradient-buttons
http://blog.brandoncash.net/post/525423850/sexy-css-buttons
http://blog.brandoncash.net/post/525423850/sexy-css-buttons
www.broken-links.com/2010/03/22/create-a-studio-style-backdrop-with-css3
www.broken-links.com/2010/03/22/create-a-studio-style-backdrop-with-css3
http://sickdesigner.com/index.php/2010/html-css/css3-vignette-a-wicked-cool-technique
http://sickdesigner.com/index.php/2010/html-css/css3-vignette-a-wicked-cool-technique
http://atomicrobotdesign.com/blog/htmlcss/make-the-thinkgeek-background-effect-using-css3
http://atomicrobotdesign.com/blog/htmlcss/make-the-thinkgeek-background-effect-using-css3
http://aext.net/2010/08/css3-sidebar-full-height-background-color

CHAPTER 2: SPEECH BUBBLES78

First, you specify the type of gradient—linear or radial—within the
-webkit-gradient function itself, instead of having separate linear-
gradient and radial-gradient functions.

Next, you specify the horizontal and vertical positions of the starting
point (here, 0 0), followed by the horizontal and vertical positions of
the ending point (here, 0 30). You can do this using keywords (such as
top and left), percentages, or pixels, but strangely, Webkit requires
you to leave off the “px” if you want to use pixels. So, in this case,
we’re telling Webkit that we want the gradient to start at a point zero
pixels across and zero pixels down the box (the top left corner) and
end at zero pixels across and 30 pixels down the box. This makes the
gradient run from the top to 30 pixels down the box, and then fill the
rest of the box with the ending color, just like in Firefox.

After the starting and ending points, we have the starting color and
the ending color. Just like with Firefox, you can use whatever color
syntax you wish, but note that you must include from and to before
each color.

The result of this -webkit-gradient CSS should look the same as
Figure 2.18.

The CSS syntax differences between Firefox and Webkit can be hard
to remember. Luckily, you don’t have to memorize them if you don’t
want to. There are some great gradient-generator tools online that
allow you to use a visual editor to create the gradient, and then they
write the corresponding CSS you need to use. Just copy and paste!
Find these gradient generators at http://gradients.glrzad.com, http://
westciv.com/tools/gradients, http://westciv.com/tools/radialgradients,
and www.display-inline.fr/projects/css-gradient.

WO R K A R O U N D S FO R N O N - S U P P O RT I N G B R OWS E R S

The CSS we’ve used so far works only in Safari, Chrome, and Firefox
3.6 and later, making gradients one of the less-supported features
of CSS3. However, it’s one of the easiest features to provide work-
arounds for non-supporting browsers. (If you even choose to provide
a workaround, that is—letting non-supporting browsers see the solid
background color is an acceptable fallback in most cases.)

Picture it. The most obvious workaround for non-supporting brows-
ers is to just go back to the good old-fashioned way of creating

http://gradients.glrzad.com
http://westciv.com/tools/gradients
http://westciv.com/tools/gradients
http://westciv.com/tools/radialgradients
www.display-inline.fr/projects/css-gradient

GRAPHIC EFFECTS SANS GRAPHICS 79

gradients: create an actual image gradient as an alpha-transparent
PNG, set it as the background image on the blockquote, and tile it
horizontally. Just make sure to declare this image before the two back-
ground-image declarations that contain the -moz-linear-gradient
and -webkit-gradient functions. This allows browsers that do sup-
port gradients to override the first background-image property that
uses an image with the later background-image property that creates a
CSS3 gradient.

Of course, creating and using an image negates the efficiency benefits
of using CSS3 to generate gradients for you. Firefox 3.6 won’t load the
image that it doesn’t need, but Safari and Chrome will, even though
they use the CSS3 gradient and never show the image. So, you keep
the performance advantage of CSS3 gradients in Firefox 3.6, but lose
it in Safari. Granted, you still get the other advantages of CSS3 gradi-
ents over image gradients, but the performance benefit is one of the
most important.

MORE DETAILS ON THE WEBKIT
LINEAR GR ADIENT SYNTA X

In a Webkit linear gradient, if you want to include any extra colors

between the starting and ending colors, you’d use syntax like

color-stop(50%, #333). In this example, 50% specifies how far along

the gradient you want the color to appear; it can also be written as a

number between 0 and 1. #333 is the color value, written in any syntax

you like. The color-stop can be written between the starting and ending

colors or after them, with each color-stop separated by commas.

For even more details on the Webkit syntax, see these articles:

“Safari CSS Visual Effects Guide: Gradients” (http://developer.

apple.com/safari/library/documentation/InternetWeb/Conceptual/

SafariVisualEffectsProgGuide/Gradients/Gradients.html)

“CSS gradient syntax: comparison of Mozilla and WebKit,”

by Peter Gasston (www.broken-links.com/2009/11/26/

css-gradient-syntax-comparison-of-mozilla-and-webkit)

“CSS gradient syntax: comparison of Mozilla and WebKit

(Part 2),” by Peter Gasston (www.broken-links.com/2009/11/30/

css-gradient-syntax-comparison-of-mozilla-and-webkit-part-2)

http://developer.apple.com/safari/library/documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide/Gradients/Gradients.html
http://developer.apple.com/safari/library/documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide/Gradients/Gradients.html
http://developer.apple.com/safari/library/documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide/Gradients/Gradients.html
www.broken-links.com/2009/11/26/css-gradient-syntax-comparison-of-mozilla-and-webkit
www.broken-links.com/2009/11/26/css-gradient-syntax-comparison-of-mozilla-and-webkit
www.broken-links.com/2009/11/30/css-gradient-syntax-comparison-of-mozilla-and-webkit-part-2
www.broken-links.com/2009/11/30/css-gradient-syntax-comparison-of-mozilla-and-webkit-part-2

CHAPTER 2: SPEECH BUBBLES80

Because of this performance hit in Webkit-based browsers, I rec-
ommend you either forgo the background image fallback, letting
non-supporting browsers just miss out on the gradient, or hide the
background image fallback from gradient-supporting browsers by
using Modernizr (explained in Chapter 1). Of course, if you’re going
to go to all the trouble of creating and applying a gradient image, you
may decide it’s best to just use the image for all browsers and not use
CSS3 gradients at all. There’s no right answer here, but my recom-
mendation is to either use CSS3 gradients exclusively, or don’t use
them at all and stick with images.

Use a script. For IE 6 through 8, you can use PIE (http://css3pie.com/
documentation/supported-css3-features). For other browsers, check
out Weston Ruter’s css-gradients-via-canvas script (http://weston.
ruter.net/projects/css-gradients-via-canvas). It works in browsers that
support the HTML5 canvas element, so it makes gradients possible in
Firefox 2 and 3 as well as Opera 9.64 and later. It doesn’t work in IE,
but you could use it in combination with IE’s Gradient filter. Which
leads us nicely to the next workaround…

Change color values for a different effect. We’re already using IE’s
Gradient filter to create single-color semitransparent backgrounds
on the blockquotes. We can modify the starting color values to be a
lighter shade of blue to simulate the CSS3 gradient that we’re using.

In both IE rules, change the starting color in the Gradient filter from
#99A6DADC to #99E3F4EE:

.ie6 blockquote, .ie7 blockquote {
 background: none;
 filter: progid:DXImageTransform.Microsoft.gradient
 (startColorstr=#99E3F4EE, endColorstr=#99A6DADC);
 zoom: 1;
}
.ie8 blockquote {
 -ms-filter: “progid:DXImageTransform.Microsoft.gradient
 (startColorstr=#99E3F4EE, endColorstr=#99A6DADC)”;
}

By default, IE gradients run from top to bottom, so the resulting gra-
dients in IE look reasonably similar to the ones in Firefox and Webkit-
based browsers (Figure 2.20). We can’t control the placement of the
color stops in IE like we can with CSS3 gradients, but the filter works
well for simple, two-color, linear gradients. It works only in IE 8 and

T I P : Another way to

fake a gradient is to use

an inset box-shadow,

which has m

support than CSS3 gra-

dients (but not as much

as plain old background

images, of course).

I’ll go over the

shadow property further

down in this chapter.

http://css3pie.com/documentation/supported-css3-features
http://css3pie.com/documentation/supported-css3-features
http://weston.ruter.net/projects/css-gradients-via-canvas
http://weston.ruter.net/projects/css-gradients-via-canvas

GRAPHIC EFFECTS SANS GRAPHICS 81

earlier, though; IE 9 doesn’t support Microsoft filters. Thus, no gradi-
ent shows in IE 9, but at least IE 9 shows the semitransparent back-
ground color.

Note that if you have a fallback background image declared for other
browsers, IE will let it override the Gradient filter. The IE 7 and ear-
lier rule already removes any background that might be present, but
the IE 8 rule doesn’t. Remember to add background: none; to the IE
8 rule if you add a background image to the main blockquote rule
(because you’re adding a gradient image fallback, for instance).

Image-free Drop Shadows

In our continuing quest for three-dimensionality, we can add a
drop shadow behind each speech bubble. Once again, we’ll do it
without images.

Drop shadows on boxes are created in CSS3 using the box-shadow
property. In the property, you set the shadow’s horizontal and vertical
offsets from the box, its color, and you can optionally set blur radius
as well as spread radius.

Add the following three lines of CSS to the blockquote rule:

-moz-box-shadow: 1px 1px 2px hsla(0,0%,0%,.3);
-webkit-box-shadow: 1px 1px 2px hsla(0,0%,0%,.3);
box-shadow: 1px 1px 2px hsla(0,0%,0%,.3);

Just as with border-radius, all three lines accomplish the same thing,
but are read by different browsers; the non-prefixed box-shadow
property will work only in IE 9 and Opera at the time of this writing.

The first value in each property, 1px, is the horizontal offset from the
box, and it tells the browser to move the shadow one pixel to the right
of the box’s edge. The second value, 1px, is the vertical offset, moving
the shadow one pixel down. You can use negative values to move the
shadow to the left and up instead.

T I P : Find out more

about ’s Gradient

filter at http://

msdn.microsoft.

com/en-us/librar

(VS.85).aspx.

F I G U R E 2 . 2 0 IE’s Gradient
filter can simulate simple CSS3
gradients (shown here in IE 8).

N OT E : The page

with all the changes

to this point is name

in the exercise files

that you downloaded

for this chapter.

http://msdn.microsoft.com/en-us/library/ms532997(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms532997(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms532997(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms532997(VS.85).aspx

CHAPTER 2: SPEECH BUBBLES82

The third value, 2px, is the blur radius, which specifies over how
many pixels the shadow should stretch. A larger value makes the
shadow blurrier and softer; a value of zero would make it completely
sharp-edged.

The fourth value is the color—in this case, black at 30 percent opac-
ity. You can use any syntax for declaring the color in box-shadow, but
HSLA or RGBA—the only syntaxes that can make a color semitrans-
parent—are your best bets. Semitransparency is very handy for drop
shadows, since you want to be able to see the background of whatever
is behind the shadow peeking through a bit. If you made the shadow
solid light gray, for instance, and then changed the page’s background
to dark navy blue, you’d end up with a light gray shadow on top of a
navy blue background. What you really want is an even darker navy
blue shadow, as that’s how a shadow on something navy blue would
look in real life. Using HSLA or RGBA for your drop shadows, and
keeping the colors either black (for a shadow) or white (for a glow
effect) allows you to switch the background color or image under the
drop shadow and not have to make a corresponding change to the
color of the shadow itself. It will appear to adjust its color to whatever
is beneath it.

With box-shadow added to the blockquote rule, save the page, and
check it out in an up-to-date browser to see the subtle greenish-gray
shadow to the right and bottom of each speech bubble (Figure 2.21).
You’ll notice that the shadow pays attention to the border-radius and
is also rounded to match the corners.

N OT E : he number v -

ues in the box-shadow

property have to be

specified in the exact

order s

don’t have to put the

color value at the end.

You can put the color

value first if you want.

F I G U R E 2 . 2 1

The box-shadow property
adds a shadow beneath
each speech bubble.

GRAPHIC EFFECTS SANS GRAPHICS 83

Our drop shadow does add that extra little hint of three-dimension-
ality, but we can increase that 3D appearance by making the speech
bubbles appear to move forward a bit when each is hovered over. The
farther away the speech bubble is from the background, the larger
its shadow should appear. You increase the offset of the shadow on
hover by adding this rule:

blockquote:hover {
top: -2px;
left: -2px;
-moz-box-shadow: 3px 3px 2px hsla(0,0%,0%,.3);
-webkit-box-shadow: 3px 3px 2px hsla(0,0%,0%,.3);
box-shadow: 3px 3px 2px hsla(0,0%,0%,.3);

}

The negative top and left values are what actually shift the speech
bubble and create the appearance of movement, but increasing the
shadow as well—from 1 pixel offset to 3 pixels offset—makes the move-
ment look more realistic (Figure 2.22). Increasing the shadow also
makes it appear more like the speech bubble is moving away from the
background and closer to the user, instead of just farther up the page.

T I P : or help creat-

ing more complicated

shadows, use the

shadow generator at

http://westciv.com/

tools

nfortunately, how-

ever

spread radius or inset.

F I G U R E 2 . 2 2 The larger
shadow on hovered
speech bubbles makes
them appear to jump
out at you a bit.

http://westciv.com/tools/boxshadows
http://westciv.com/tools/boxshadows

CHAPTER 2: SPEECH BUBBLES84

THE LOWDOWN ON THE box-shadow PROPERTY

The box-shadow property is part of a draft of the Backgrounds and

Borders module; this draft is found at http://dev.w3.org/csswg/css3-

background/#the-box-shadow, but ultimately the finalized module can

be found at www.w3.org/TR/css3-background.

In the property, you set the shadow’s horizontal and vertical offsets

from the box, and you set the shadow’s color. You’ll usually also want

to set a blur radius (it’s zero otherwise) and can optionally set a spread

radius to expand or contract the overall width of the shadow, using

positive or negative values, respectively. You can make a shadow

appear inside a box instead of outside or behind it using the inset

keyword, added at the start or end of the box-shadow value. (Spread

radius and inset are not supported in Safari 4 and earlier, Safari on

iOS 3 and earlier, or IE 9.)

You can apply multiple shadows to the same box by writing each in the

same box-shadow property, separated by commas. They’ll be stacked

on top of each other, with the first shadow declared on top.

Other than creating basic shadows behind boxes, you might want to

use box-shadow for:

Glows (by not offsetting the shadow at all and also optionally using

a positive spread radius value)

3D-looking buttons

Simulating multiple borders around a box (using multiple box-shadows,

each set to 0 blur radius to give them hard edges); see http://

weston.ruter.net/2009/06/15/multiple-borders-via-css-box-shadow

Simulating gradients (using inset box-shadow); see http://girliemac.

com/blog/2010/02/04/css3-box-shadow-with-inset-values-the-

aqua-button-rerevisited, http://graphicpush.com/experiments-with-

css3-border-radius-and-box-shadow, and http://nimbupani.com/

vignettes-with-css3-box-shadows.html

TA B L E 2 . 5 box-shadow browser support

IE FIREFOX OPERA SAFARI CHROME

Partial, 9+ Yes with -moz-,

3.5+

Yes, 10.5+ Yes with -webkit- Yes with -webkit-

www.w3.org/TR/css3-background
http://dev.w3.org/csswg/css3-background/#the-box-shadow
http://dev.w3.org/csswg/css3-background/#the-box-shadow
http://weston.ruter.net/2009/06/15/multiple-borders-via-css-box-shadow
http://weston.ruter.net/2009/06/15/multiple-borders-via-css-box-shadow
http://graphicpush.com/experiments-withcss3-border-radius-and-box-shadow
http://graphicpush.com/experiments-withcss3-border-radius-and-box-shadow
http://girliemac.com/blog/2010/02/04/css3-box-shadow-with-inset-values-theaqua-button-rerevisited
http://girliemac.com/blog/2010/02/04/css3-box-shadow-with-inset-values-theaqua-button-rerevisited
http://girliemac.com/blog/2010/02/04/css3-box-shadow-with-inset-values-theaqua-button-rerevisited
http://nimbupani.com/vignettes-with-css3-box-shadows.html
http://nimbupani.com/vignettes-with-css3-box-shadows.html

GRAPHIC EFFECTS SANS GRAPHICS 85

WO R K A R O U N D S FO R I E

The box-shadow property is not supported by IE 8 and earlier, but as
with gradients, you can use IE’s filters to fake it. The DropShadow
and Shadow filters are specifically designed to create drop shadows,
and Glow works if you want an even glow around all sides of the box.
Unfortunately, these filters don’t offer as many customization options
for the drop shadow as you have with CSS3 box-shadow, as Chris
Casciano demonstrates and explains in his article “CSS3 Box Shadow
in Internet Explorer [Blur-Shadow]” at http://placenamehere.com/
article/384/CSS3BoxShadowinInternetExplorerBlurShadow. I don’t
think any of these filters will create the particular effect we want
in this case.

Also in this article, Chris shows a clever technique using IE’s Blur filter
instead of DropShadow, Shadow, or Glow to create a more realistic-
looking drop shadow, but the technique requires making a copy of
the box in the HTML, and then blurring this copy. Another article at
http://dev.opera.com/articles/view/cross-browser-box-shadows uses
the same technique, and also shows how to use Blur to create the
appearance of an inset shadow. The extra HTML elements required in
these tutorials are an acceptable compromise when you really must
have a drop shadow in IE, but in the case of our speech bubbles, I
don’t think the extra work and extra file size that would result from
all those extra divs is worth the small visual gain. So we’re not going
to walk through the steps to implement the Blur filter solution here;
we’ll be satisfied with no drop shadows in IE.

Image-free Text Shadows

Why should the boxes get to have all the fun—shouldn’t text be able to
have drop shadows too? Happily for us, CSS3 has a property named
text-shadow that does just that.

The text-shadow property can give you a nice accessibility and usabil-
ity benefit. With the graphic effects we’ve already looked at in this
chapter, the CSS3 equivalent just replaces a decorative image, such
as replacing a GIF of a curved corner with a CSS-generated curved
corner—kind of trading an image for a faux-image. The text-shadow
property, on the other hand, allows you to replace an image of text
with real text. For instance, you may have a headline that you want
to have a shadow behind it. Before text-shadow, you might create an

N OT E : The PIE and

I -CSS3 scripts men-

tioned earlier in the

chapter can also cre-

ate drop shadows in

IE. ut with the I -CSS3

script, the drop shad-

ows have to be black.

http://placenamehere.com/article/384/CSS3BoxShadowinInternetExplorerBlurShadow
http://placenamehere.com/article/384/CSS3BoxShadowinInternetExplorerBlurShadow
http://dev.opera.com/articles/view/cross-browser-box-shadows

CHAPTER 2: SPEECH BUBBLES86

image of that headline and its shadow and display that image in your
page. The user has no control over text in an image to make it more
readable for him or herself by scaling it, changing its color, chang-
ing the font, and any number of other things you can do to real text.
Using text-shadow on real text gives control back to the user.

Using real text with text-shadow applied can also improve readabil-
ity by creating more contrast between the text and its background.
Have you ever watched a movie with closed captioning? The captions
probably had a small shadow or outline around them to make the text
stand out more on a variety of background colors. Slight drop shad-
ows behind text in web pages can give the same readability boost.

Other advantages of real text: it’s searchable, it can be selected to copy
and paste, and it’s more quickly and easily editable by you or your cli-
ent than an image or Flash movie would be.

Of course, like many web techniques, text-shadow can backfire and
decrease usability if not used well. I’m certainly not saying you should
go out and add drop shadows to all your text; there are many cases
where it would impede readability. You also always need to make sure
that the text is still readable if the shadow isn’t there. But text-shadow
is another tool in your arsenal that you can choose to use when
appropriate.

So, text-shadow sounds great—how do you apply it?

M A K I N G T E X T STA N D O U T U S I N G S H A D OWS

Let’s add a text-shadow on hover to highlight the chosen comment
just a bit. Add the following line to the blockquote:hover rule:

text-shadow: 1px 1px 1px hsla(0,0%,100%,.7);

The syntax is almost exactly the same as the syntax for box-shadow.
(The only difference is that you can’t set spread radius or inset on
text-shadow.) We have a horizontal offset, vertical offset, optional blur
radius, and color. In this case, there’s no need to add any browser-
specific prefixes; Firefox, Safari, Chrome, and Opera all support the
standard text-shadow property. Figure 2.23 shows the subtle shadow
that appears behind the text of a blockquote that’s being hovered over.

T I P : Just like w

, text-

shadow usually looks

best when the color

is semitransparent

using HSLA or RGBA.

GRAPHIC EFFECTS SANS GRAPHICS 87

F I G U R E 2 . 2 3 A white shadow
appears to the right and bottom
of the text in the speech bubble
that the user has her mouse over.

Another nice place to add a shadow behind text is the commenter’s
name and date of comment. These two pieces of text are pretty small
and are sitting on top of a patterned background. A very slight, sharp-
edged text shadow would give it a subtle outline to make it stand out
more and be a little easier to read.

Add the following line to the existing .comment-meta rule:

text-shadow: 1px 1px 0 hsla(0,0%,100%,.7);

The effect this produces is very subtle, but it needs to be. A thick outline
around such small text would look strange and probably make it harder
to read. But the slight text shadow we’re using adds just a little bit of
contrast to make the text just a little bit more readable (Figure 2.24).

F I G U R E 2 . 2 4 The sharp-edged
shadow on the commenter’s
name and date makes the text
stand out a bit more compared
to the non-shadowed text.

N OT E : The page

with all the changes

to this point is name

in the exercise files

that you downloaded

for this chapter.

T I P : or help creat-

ing more complicated

shadows, use the

text-shadow gen-

erator at htt

com/tools/shadows.

http://westciv.com/tools/shadows
http://westciv.com/tools/shadows

CHAPTER 2: SPEECH BUBBLES88

THE LOWDOWN ON THE text-shadow PROPERTY

The text-shadow property is part of the Text module found at www.w3.org/

TR/css3-text. It was part of CSS 2, removed from 2.1, and is back in 3.

In the property, you set the shadow’s color and its horizontal and verti-

cal offsets from the text. You can also set a blur radius; the default (if

you leave it out) is zero.

You can apply multiple shadows to the same text by writing each in the

same text-shadow property, separated by commas. They’ll be stacked

on top of each other, with the first declared shadow on the top.

Other than creating basic shadows behind text, you might want to use

text-shadow for:

Glows; see http://desandro.com/articles/the-new-lens-flare

Letterpress, engraved, cut-out or embossed text (using a

light shadow on one side of the text and a dark shadow

on the other side); see http://sixrevisions.com/css/

how-to-create-inset-typography-with-css3

Fiery text (using multiple yellow, orange, and red shadows); see

www.css3.info/preview/text-shadow

Blurred text (using a shadow the same color as the text, or

simply transparent color for the text); see http://simurai.com/

post/684792689/text-blur

Creating the appearance that text is stacked into a 3D column

(using multiple shadows); see http://css-tricks.com/3d-text-tower

Creating the appearance that links are pushed inwards like a but-

ton when clicked, by decreasing text-shadow; see www.impres-

sivewebs.com/text-shadow-links

Also check out http://maettig.com/code/css/text-shadow.html for many

examples of text-shadow effects; some are more practical than oth-

ers, but all are good for jogging your creativity.

TA B L E 2 . 6 text-shadow browser support

IE FIREFOX OPERA SAFARI CHROME

No Yes Yes Yes Yes

www.w3.org/TR/css3-text
www.w3.org/TR/css3-text
http://desandro.com/articles/the-new-lens-flare
http://sixrevisions.com/css/how-to-create-inset-typography-with-css3
http://sixrevisions.com/css/how-to-create-inset-typography-with-css3
www.css3.info/preview/text-shadow
http://simurai.com/post/684792689/text-blur
http://simurai.com/post/684792689/text-blur
http://css-tricks.com/3d-text-tower
www.impressivewebs.com/text-shadow-links
www.impressivewebs.com/text-shadow-links
http://maettig.com/code/css/text-shadow.html

TRANSFORMING THE AVATARS 89

WO R K A R O U N D S FO R I E

The DropShadow, Shadow, or Glow filters for IE that I mentioned
earlier can actually create shadows behind text too, not just boxes. To
get a text shadow instead of a box shadow, you write the filter in the
exact same way, but make sure there is no background color or back-
ground image on the element. If it has a background, IE will apply the
shadow to the box; if it doesn’t have a background, it will apply the
shadow to the content.

Unfortunately, when any of these filters are applied to text, they make
that text very jagged. It’s similar to the unevenness of the text that
showed up when we applied the gradient filter in IE (see Figures 2.17
and 2.20), but more extreme. In the case of our speech bubbles, I think
it really impairs the readability, and the whole point of adding text-
shadow here was to enhance readability. So, we won’t be adding IE
filters to any text here. If you do want to add filters yourself, see http://
msdn.microsoft.com/en-us/library/ms673539(VS.85).aspx for the syn-
tax. There are also a couple jQuery plugins that uses IE filters, available
at http://kilianvalkhof.com/2008/javascript/text-shadow-in-ie-with-
jquery and www.hintzmann.dk/testcenter/js/jquery/textshadow.

Transforming the Avatars
We’ve completed all the styling for the speech bubbles themselves.
What about the avatars, the little images next to each speech bubble?
We could reuse some of the CSS3 effects such as box-shadow on them,
but let’s do something new and use CSS3 transforms.

What are Transforms?

Transforms are a collection of effects, each called a transform function,
that manipulate the box in ways like rotating, scaling, and skewing.
These effects would previously have had to be accomplished with
images, Flash, or JavaScript. Transforming objects with pure CSS
avoids the need for these extra files, once again increasing the effi-
ciency of both your development and the pages themselves.

N OT E : If you’re using

the Mootools JavaS

framework, you may

want to check out the

Moo ools text drop-

shadow script, which

works in IE and non-IE

browsers, at htt

pr0digy.com/mootools/

text-dropshadows.

N OT E : Firefox

currently doesn’t allow

-moz-bord

on img elements, so—

sadly—you can’t round

the avatars’ corners

in that browser.

http://msdn.microsoft.com/en-us/library/ms673539(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms673539(VS.85).aspx
http://kilianvalkhof.com/2008/javascript/text-shadow-in-ie-withjquery
http://kilianvalkhof.com/2008/javascript/text-shadow-in-ie-withjquery
www.hintzmann.dk/testcenter/js/jquery/textshadow
http://pr0digy.com/mootools/text-dropshadows
http://pr0digy.com/mootools/text-dropshadows
http://pr0digy.com/mootools/text-dropshadows

CHAPTER 2: SPEECH BUBBLES90

THE LOWDOWN ON THE transform PROPERT Y

The transform property is part of both the 3D Transforms module

found at www.w3.org/TR/css3-3d-transforms, and the 2D Transforms

module, at www.w3.org/TR/css3-2d-transforms. All of the 2D transform

functions are also included in the 3D spec, so you may just want to refer

to the 3D spec.

There are too many transform functions to list here, but here’s sample

syntax for the most important and supported ones:

translate moves the object to a new location, specified as

an X and Y coordinate. Positive values move it right and down,

respectively, and negative values move it left and up. Example:

translate(20px, -10px)

scale scales the dimensions of the object X number of times.

Negative values flip the object. To scale something smaller, use a

number between 0 and 1. If you use two values, separated by com-

mas, the first is the horizontal scaling factor and the second is the

vertical scaling factor. Example: scale(2.5) or scale (1, .5)

rotate turns an object a specified number of degrees (deg).

Positive values turn it clockwise; negative values turn it counter-

clockwise. Example: rotate(45deg)

skew skews or warps an object, again in degrees. The first value

controls the horizontal slope and the second the vertical; if you

use only one value, the skew on the Y axis is set to zero. Example:

skew(10deg, 20deg)

You can include multiple transform functions in one transform

property, separated with spaces. The transforms are applied in the

order listed.

You can use the transform-origin property to specify the point of

origin from which the transform takes place, using keywords, numbers,

or percentages. The default is the center.

When you transform an object, the other objects around it don’t move

to make way for the transformation (similar to relative positioning). The

object is placed first in the flow, and then transformed.

www.w3.org/TR/css3-3d-transforms
www.w3.org/TR/css3-2d-transforms

TRANSFORMING THE AVATARS 91

Other than rotating avatars, you might want to use transforms for:

Increased link, button, or table row size on hover

Display of an image gallery where thumbnails scale up when

hovered

Angled photos (to create the appearance of that they’ve been

tacked-up or are scattered across a table, for instance)

Angled sticky-note-style boxes

Randomly angled tags in a tag cloud; see http://code.almeros.com/

how-to-create-a-css3-enabled-tag-cloud

Skewed boxes or images (to imply perspective)

Small diagonal banner in the top corner of a page

Sideways text (popular in date stamps on blog posts, for instance);

see http://snook.ca/archives/html_and_css/css-text-rotation

Printable folding card; see http://natbat.net/2009/May/21/

pocketbooks

Slideshow where images slide in and out of viewing window

(using translate); see http://css3.bradshawenterprises.

com/#slide2

Links or tabs that slide up into full view when hovered (using

translate); see http://creativefan.com/css3-tutorial-create-card-

pockets-how-to

3D cube (using 2D skew); see http://depotwebdesigner.com/

tutorials/how-to-create-3d-cube-with-css3.html

TA B L E 2 .7 2D transforms browser support

IE FIREFOX OPERA SAFARI CHROME

No Yes with -moz-,

3.5+

Yes with -o-,

10.5+

Yes with

-webkit-

Yes with

-webkit-

TA B L E 2 . 8 3D transforms browser support

IE FIREFOX OPERA SAFARI CHROME

No No No Yes with

-webkit-, 5+

No

http://code.almeros.com/how-to-create-a-css3-enabled-tag-cloud
http://code.almeros.com/how-to-create-a-css3-enabled-tag-cloud
http://snook.ca/archives/html_and_css/css-text-rotation
http://natbat.net/2009/May/21/pocketbooks
http://natbat.net/2009/May/21/pocketbooks
http://css3.bradshawenterprises.com/#slide2
http://css3.bradshawenterprises.com/#slide2
http://creativefan.com/css3-tutorial-create-card-pockets-how-to
http://creativefan.com/css3-tutorial-create-card-pockets-how-to
http://depotwebdesigner.com/tutorials/how-to-create-3d-cube-with-css3.html
http://depotwebdesigner.com/tutorials/how-to-create-3d-cube-with-css3.html

CHAPTER 2: SPEECH BUBBLES92

Just like text-shadow, transforms can sometimes have a usability and
accessibility benefit by allowing you to replace an image of text with
real text. For instance, you may have a feature box or ad contain-
ing text that you want to be at a slight angle. Before transforms, you
might have created an image of that angled box—text and all—and
used that image in your page. Image text is less accessible, not search-
able, and takes more work to create and edit.

Obviously, you don’t want to start skewing and rotating all the text on
your page. That certainly wouldn’t improve readability! But in small
doses, and in cases where you were going to use an image or Flash
movie instead, transforms can improve accessibility by allowing you
to accomplish the same effect with real text.

Rotating the Avatars

Let’s look at the syntax for transforms by rotating the avatars. Add this
new rule to the styles:

.comment-meta img {
 -moz-transform: rotate(-5deg);
 -o-transform: rotate(-5deg);
 -webkit-transform: rotate(-5deg);
 transform: rotate(-5deg);
}

The prefix-free transform property is not yet supported by any
browser; we’ve included it for future compatibility.

The transform property (and, for now, all three browser-specific
equivalents) tells the browser that you want to apply a transform.
You then specify that the particular transform function you want is
rotate, and that the number of degrees of rotation, using the deg
unit, is negative five. You can use either positive or negative values.
Other transform functions take different types of measurements—a
value of -5deg doesn’t make much sense for scale, does it?—but the
pattern is always the same:

transform: function(measurements);

You can also use the transform-origin property to specify the point
of origin from which the transform takes place, such as the center or
top right corner of the object. The default is the dead center, which
is fine in our case, so there’s no need to add the transform-origin
property here.

N OT E : You can have

the syntax for all the dif

ferent transforms written

for you using the handy

transforms CSS gen-

erator at http://westciv.

com/tools/transforms.

N OT E : At the time of

this writing, hrome

does a really bad job

anti-aliasing the edges

of the avatars when

they’re rotated, ma -

ing them very

here’s no workaround.

You can either remove

the -webkit- declara-

tion, which would also

remove the rotation

in afari, or just live

with the jaggedness.

http://westciv.com/tools/transforms
http://westciv.com/tools/transforms

TRANSFORMING THE AVATARS 93

Save the page and refresh your browser. You’ll see that the avatars are
now at an angle (Figure 2.25).

WO R K A R O U N D S FO R I E

IE’s Matrix filter can emulate several of the CSS3 transforms. Unfor-
tunately, you have to do some complicated calculations using matrix
mathematics to find the correct values to use in the filter. I’m guess-
ing you’re not reading a web design book because you’re wild about
math, so I’ll spare you that (I wouldn’t be able to explain it anyway)
and point you to an online CSS generator called IE’s CSS3 Transforms
Translator at www.useragentman.com/IETransformsTranslator,
developed by Zoltan Hawryluk and yours truly.

To use the Transforms Translator, type rotate(-5deg) into the Step 1
input box and any width and height values you want (we’re not going
to be using them, but they’re required to use the tool). Then click the
Translate to IE Matrix button. The Step 2 box will appear below with
two code blocks in it, one for CSS3-supporting browsers, and one for
IE (Figure 2.26). F I G U R E 2 . 2 5

The rotate transform
function angles the
avatar images.

F I G U R E 2 . 2 6 The Transforms
Translator web site generates IE
Matrix filter values that are equivalent
to the CSS3 2D transforms you feed it.

www.useragentman.com/IETransformsTranslator

CHAPTER 2: SPEECH BUBBLES94

Copy the code from the IE box and paste it into the styles in the head
of the page. Remove any comments from within the CSS:

#transformedObject {
 -ms-filter: “progid:DXImageTransform.Microsoft.
 ¬ Matrix(M11=0.9961946980917454, M12=0.08715574274765871,
 ¬ M21=-0.08715574274765871, M22=0.9961946980917454,
 ¬ SizingMethod=’auto expand’)”;
 filter: progid:DXImageTransform.Microsoft.Matrix(

 M11=0.9961946980917454,
 M12=0.08715574274765871,
 M21=-0.08715574274765871,
 M22=0.9961946980917454,
 SizingMethod=’auto expand’);

 margin-left: -11px;
 margin-top: -11px;
}

This rule includes the filter property for IE 6 and 7, and the -ms-
filter property for IE 8. Note that although the -ms-filter prop-
erty shown above has line breaks in it, in order to fit within the
page of this book, these are not there in the value generated by the
Transforms Translator. Make sure you keep the -ms-filter property
all on one line—it won’t work otherwise. The filter property works
with or without line breaks in it. The margin values are there because
IE doesn’t use the same origin point for the transform as other brows-
ers, which would make the avatars slightly overlap the commenters’
names. Using margins or relative positioning nudges the elements
into place to match up with the other browsers.

Now we need to change the selector to match the name of the ele-
ment we want to transform, in this case .comment-meta img. We also
need to divide the single rule into two rules: one for IE 6 and 7, and
one for IE 8. Make sure you include the margin values in both rules.

.ie6 .comment-meta img, .ie7 .comment-meta img {
 filter: progid:DXImageTransform.Microsoft.Matrix(
 M11=0.9961946980917454,

 M12=0.08715574274765871,
 M21=-0.08715574274765871,
 M22=0.9961946980917454,
 SizingMethod=’auto expand’);
 margin-left: -11px;
 margin-top: -11px;

}
.ie8 .comment-meta img {

TRANSFORMING THE AVATARS 95

 -ms-filter: “progid:DXImageTransform.Microsoft.Matrix(
 M11=0.9961946980917454, M12=0.08715574274765871,
 ¬ M21=-0.08715574274765871, M22=0.9961946980917454,
 ¬ SizingMethod=’auto expand’)”;
 margin-left: -11px;
 margin-top: -11px;
}

If you save the page and preview it in IE now, you’ll discover that
it works perfectly in IE 7, but in IE 6 the tops of the images are cut
off, and in IE 8 the images overlap the commenters’ names slightly
(Figure 2.27).

The IE 6 problem is due to the negative margins on the images—IE 6
doesn’t display the part of an element that is outside its box if nega-
tive margins have moved it outside. To fix it, just add position: rel-
ative to the IE 6 and 7 rule:

.ie6 .comment-meta img, .ie7 .comment-meta img {
 filter: progid:DXImageTransform.Microsoft.Matrix(

 M11=0.9961946980917454,
 M12=0.08715574274765871,
 M21=-0.08715574274765871,
 M22=0.9961946980917454,
 SizingMethod=’auto expand’);

 margin-left: -11px;
 margin-top: -11px;
 position: relative;
}

The IE 8 overlapping problem is due to the fact that the negative mar-
gins don’t interact well with the other styles we already have in place.
Let’s use relative positioning to reposition the images instead of nega-
tive margins:

.ie6 .comment-meta img, .ie7 .comment-meta img {
 filter: progid:DXImageTransform.Microsoft.Matrix(

 M11=0.9961946980917454,
 M12=0.08715574274765871,
 M21=-0.08715574274765871,
 M22=0.9961946980917454,
 SizingMethod=’auto expand’);

 position: relative;
 top: -5px;
 left: -5px;
}

F I G U R E 2 . 2 7

The rotation (in IE 8)
looks good, but the
avatars overlap the
commenters’ names.

N OT E : emember,

the line breaks shown

in the -ms-

property are just there

for book

ake sure

your -ms-filter pr -

erty is all on one line.

CHAPTER 2: SPEECH BUBBLES96

.ie8 .comment-meta img {
 -ms-filter: “progid:DXImageTransform.Microsoft.
 ¬ Matrix(M11=0.9961946980917454, M12=0.08715574274765871,
 ¬ M21=-0.08715574274765871, M22=0.9961946980917454,
 ¬ SizingMethod=’auto expand’)”;
 position: relative;
 top: -5px;
 left: -5px;
}

With these changes, the avatars are now rotated in IE 6 through 8 the
same amount as in the transforms-supporting browsers, and they don’t
overlap the commenters’ names below or the comment text to the right.

Instead of using the Matrix filter directly, you can use a premade
script that uses it behind the scenes. A script has the advantage that
you can then script changes in the transforms, to create anima-
tions or other effects, more easily. The cssSandpaper script (www.
useragentman.com/blog/csssandpaper-a-css3-javascript-library),
also by Zoltan Hawryluk, makes several transform functions as well as
box-shadow, gradients, RGBA, and HSLA work in IE. The Transformie
script by Paul Bakaus (http://paulbakaus.com/?p=11) is a simpler script
that uses jQuery.

The Finished Page
We’ve completed all the styling for the comments area, so check out
your work in an up-to-date browser; you should see something like
Figure 2.28. Compare it to Figure 2.1 showing the base page. It’s not
a radical difference, but the completed page is visually richer and
more unique.

IE is missing some of the effects, but looks fairly close to Figure 2.28
overall (Figure 2.29). The small differences that do exist are OK; the
effects we’ve added are purely decorative, and IE users will have no
reason to think that they’re missing anything. Even if you choose not
to add any of the IE workarounds such as filters that we’ve used in this
chapter, your page will still look like Figure 2.1 in IE 8 and earlier and
be perfectly usable and attractive.

N OT E : he completed

page showing all of

these effects is named

html in the exercise

files for this chapter.

www.useragentman.com/blog/csssandpaper-a-css3-javascript-library
www.useragentman.com/blog/csssandpaper-a-css3-javascript-library
http://paulbakaus.com/?p=11

THE FINISHED PAGE 97

F I G U R E 2 . 2 9 IE 8 (top left), IE 6 (top right),
and the preview version of IE 9 (left) don’t dis-
play all of the CSS3 effects we’ve added, but
the page is still attractive and usable.

F I G U R E 2 . 2 8

The page with all
CSS3 applied, shown
here in Firefox 3.6.

This page intentionally left blank

3
Notebook Paper
Chapter 2 was all about creating graphic effects without any

graphics. In this chapter, we’ll use plenty of images, but new

CSS3 properties allow us to use them with more streamlined

markup and to make them behave in ways not possible with

CSS 2.1. You’ll also learn how to use unique, non-web-safe

fonts in your pages without resorting to Flash, images, or

scripting—even in Internet Explorer. Altogether, we’ll be able to

use these image and font techniques to make a web page look

like a realistic piece of notebook paper.

CHAPTER 3: NOTEBOOK PAPER100

WHAT YOU’LL LEARN

We’ll create the appearance of a piece of notebook paper using these CSS3 properties and

concepts:

The background-size property to scale a background image with the text

Multiple background images on one element

The border-image property to create graphic borders

The background-clip property to move a background image out from under a border

The @font-face rule to embed unique fonts in the page

The Base Page
Creating the appearance of real objects, like sticky notes and file fold-
ers, has always been popular in web design. If you wanted an article
to look like it was written on a piece of real paper, the first step might
be to apply a simple lined paper background image to it. Figure 3.1
shows this starting point.

F I G U R E 3 .1 The article
with a single back-
ground image, before
any CSS3 is applied.

BEYOND THE BASIC BACKGROUND 101

Beyond the Basic Background
To make the web page shown in Figure 3.1 look more like a realistic piece
of paper, you would want to add some extra graphic details beyond the
lined background, like a torn edge or a coffee stain. Without CSS3, it’s
certainly possible to add these graphic details. But new properties in
CSS3 make it easier and keep your markup cleaner. Let’s add some of
these new properties now to enhance the background.

Scaling the Background Image

One thing that would make the background look more realistic is if the
text were aligned to the notebook paper lines, instead of overlapping
them indiscriminately. To fix this without CSS3, you would need to set
a base font-size and line-height in pixels, and then adjust the spacing
between the lines in your background image to match. This would work
for most users. But if anyone resized the text, or had non-standard user
settings to override the pixel font sizes, the text would become mis-
aligned. The text could scale, but the background image couldn’t.

But that was then—before the CSS3 background-size property was
introduced. With background-size, you can control the horizontal
and vertical scaling of a background image as well as how it stretches
to cover the background area and gets clipped.

H OW background-size WO R KS

Before we apply background-size to our page, let’s look at a couple of
simple examples to get a better grip on how the property works.

Figure 3.2 shows an image 200 pixels wide by 120 pixels tall. Figure
3.3 shows how the image looks when set as a normal repeating back-
ground of a div that’s 500 pixels wide by 200 pixels tall; since the div’s
dimensions aren’t an even multiple of the image’s dimensions, some
of the image gets cut off on the right and bottom.

CHAPTER 3: NOTEBOOK PAPER102

F I G U R E 3 . 2 An image
that’s 200 pixels wide
by 120 pixels tall

F I G U R E 3 . 3 When the image is repeated
across the background of the div, some of
it gets cut off on the right and bottom.

We can use the background-size property to scale the image down
from 200 pixels to 100 pixels wide:

div {
width: 500px;
height: 200px;
border: 1px solid #999;
background-image: url(images/stars.gif);
background-size: 100px auto;

}

The first value in the background-size property, 100px, sets the width
of the background image. The second value, auto, sets the height. A
value of auto makes the height whatever it needs to be to preserve
the aspect ratio of the image. If you leave the second value off, the
browser assumes it to be auto, so a value of background-size: 100px;
would have worked identically here. Compare Figure 3.4 to Figure
3.3 to see how the background image has been shrunk but kept its
aspect ratio.

If you use percentages in the background-size property, they’re rela-
tive to the box the background is on, not to the background image
itself. If you wanted exactly two copies of the image to show in the
div, with neither cut off at all, you could use this CSS:

F I G U R E 3 . 4

The browser has scaled
the image to 100 pix-
els wide, so it now fits
in the div exactly five
times and doesn’t get
cut off on the right.

BEYOND THE BASIC BACKGROUND 103

div {
width: 500px;
height: 200px;
border: 1px solid #999;
background-image: url(images/stars.gif);
background-size: 50% 100%;

}

The image is stretched to fill half the width of the div and all of its
height, and then repeated (Figure 3.5). In this case, the browser
has to both distort the shape of the image and scale it up, making
the edges in the image look a little blurry or pixelated. As with any
browser-based scaling, background sizing is not going to look good
with all images, but can work quite well with grungy, abstract, or very
simple images that don’t have super-clean edges—such as our lined-
paper background.

MORE NEW WAYS TO TILE BACKGROUNDS

Besides setting background-size to a value that fits perfectly within the

width of a box, another way to keep background image tiles from getting

cut off on one or more sides is to use the values of round and space in

the background-repeat property. These values are new to CSS3, and

can be used in conjunction with background-size or without it.

A value of round repeats the background image but rescales it so it will

fit an even number of times without getting cut off. A value of space

repeats the background image as often as it will fit without getting cut

off, and then spaces the tiles out to fill any leftover room.

Unfortunately, at the time of this writing, the only browsers that support

these values are IE 9 and Opera, but Opera does so incompletely and

incorrectly. Until these background-repeat values have better support,

background-size is your best bet for ensuring background images

don’t get cut off, though it’s not as flexible as round and space are.

F I G U R E 3 . 5

The browser has
scaled the image
to fit twice across
the width and once
across the height,
distorting it but keep-
ing it from cutting off.

CHAPTER 3: NOTEBOOK PAPER104

M A K I N G T H E PA P E R L I N E S S C A L E W I T H T H E T E X T

In order to make our paper background image scale with the text,
we need to set its dimensions not in percentages or pixels, but in
ems. Ems are a relative unit of measurement based on the current
font height.

To get started, download the exercise files for this chapter at www.
stunningcss3.com, and open paper_start.html in your code editor of
choice. Its CSS is contained in a style element in the head of the page.

Find the #paper rule in the CSS, and add the background-size prop-
erty, plus the Mozilla and Webkit equivalents:

#paper {
float: left;
margin: 40px;
padding: 3.2em 1.6em 1.6em 1.6em;
background: url(images/paperlines.gif) #FBFBF9;
-moz-background-size: auto 1.6em;
-webkit-background-size: auto 1.6em;
background-size: auto 1.6em;

}

Opera, Chrome, Safari 5, Firefox 4, and IE 9 use the standard back-
ground-size property; Firefox 3.6 and Safari 4 and earlier use the
-moz- and -webkit- versions of the property, respectively. In each
property, we’re telling the browser that we want the height of the
image to be 1.6 ems and that we want the width to just size itself pro-
portionally. The image depicts one line on the paper, so that means
that the space between every line will now be 1.6 ems tall. Why 1.6
ems? The height of each line of text is 1.6, specified by the line-
height already in place on the body element:

body {
margin: 0;
padding: 40px;
background: #CCC url(images/background.gif);
color: #333;
font-size: 87.5%;
font-family: Georgia, “Times New Roman”, Times, serif;
line-height: 1.6;

}

www.stunningcss3.com
www.stunningcss3.com

BEYOND THE BASIC BACKGROUND 105

Figure 3.6 shows that the background image’s size has indeed changed,
but the text is still not lining up with the lines in the image. This is
because we haven’t set all the text sizes and margins to line up with a
regular spacing of 1.6 ems. The paragraph and list text have the correct
spacing for the background image, since their line-height is already 1.6
and their bottom margins are 1.6 ems, as you’ll see in the CSS. But the
headings need to have their margins tweaked to fall in line.

F I G U R E 3 . 6 The background image lines are closer together after applying background-size.

h1 {
margin: -.3em 0 .14em 0;

 color: #414141;
font-family: Helvetica, “Helvetica Neue”, Arial,

 ¬ sans-serif;
 font-size: 3.5em;
 font-weight: normal;
}
h2 {
 clear: left;
 color: #414141;

margin: 0 0 -.14em 0;
font-family: Helvetica, “Helvetica Neue”, Arial,

 ¬ sans-serif;
 font-size: 2.17em;
 font-weight: bold;
}

These margin values are based on trial and error. Unlike with absolute
pixel-based measurements, you’re not going to be able to find values
that work perfectly for all browsers; each browser has different ways
of rounding and translating relative measurements like ems into
the pixels displayed on the screen. In this case, these margin values
work well for Firefox, Safari, and Chrome. Everything is spaced out at
regular intervals of 1.6 ems, keeping the text aligned to the lines in the
background image (Figure 3.7).

CHAPTER 3: NOTEBOOK PAPER106

But in Opera, the text isn’t aligned, as Opera sizes the background
image just slightly smaller than the other browsers. If we were to
adjust the font sizes and margins to make everything line up in Opera,
it would mess up the alignment in the other browsers. You’ll have to
decide which browsers are more important to you, based on your
own site’s visitor statistics, and cater your measurements to those.

Once the text is aligned with the background image, if the user has a
different default text size from the norm, or scales the text size up or
down, the background image scales with it, keeping the lines always
aligned with the text (Figure 3.8). Also, if you were to later change the
base font size on the body element, everything would scale to match,
without your having to remake the background image.

F I G U R E 3 .7 The text
is now aligned to
the lines in the back-
ground image, shown
here in Firefox 3.6.

BEYOND THE BASIC BACKGROUND 107

WO R K A R O U N D S FO R I E

The background-size property doesn’t work in IE 8 and earlier,
and there are no workarounds to directly emulate it. In this case,
it’s a minor visual effect, so I think we can chalk it up as progressive
enhancement and not worry about its lack in IE.

You can, however, provide alternate styles using Modernizr, which
does detect for support of the background-size property. For
instance, you could provide a different background image altogether,
or you could provide an alternate version of the lined paper back-
ground image that has been designed to fit with a particular pixel
font size; you would set this pixel font size only for browsers that
don’t support background-size. I don’t recommend doing this here,
as pixel-based font sizes are bad for accessibility. However, Modernizr
is a good option in general for providing alternate styles when you’re
trying to scale a background image using background-size.

F I G U R E 3 . 8 Even if
the user has a larger
text size, the text stays
aligned with the back-
ground image lines.

CHAPTER 3: NOTEBOOK PAPER108

THE LOWDOWN ON THE background-size PROPERT Y

The background-size property is part of the Backgrounds and Borders module, found at www.

w3.org/TR/css3-background. Its value can be a width and height in any unit, or it can be auto.

Alternately, background-size can be set to either contain or cover. Both make the browser scale

the image proportionally. A value of contain scales it to the largest size where both its width and

height will fit inside the background area, so it doesn’t get cut off at all, but often leaves some area

with no background on it. A value of cover scales it to the smallest size where one tile of it will com-

pletely cover the background area, but allows it to get cut off where necessary to make sure the

whole area has a background image covering it.

Other than scaling lines to match text spacing, you might want to use background-size for:

Making the non-repeating background of the header of a page scale in a liquid or elastic layout

to always fill the whole header width

Making a repeating background image tile a full number of times instead of the tiles getting cut

off on the edges of the box

Making a large background image always fill the entire page; see www.alistapart.com/articles/

supersize-that-background-please

Scaling a faux-columns background image in a liquid layout; see www.css3.info/liquid-faux-

columns-with-background-size

Scaling a link or list item’s background image icon with its text

Scaling background images for the iPhone 4’s high-resolution display down by half, so that

when it doubles the pixels, as it always does, the images won’t look blurry; see http://dryan.com/

articles/posts/2010/6/25/hi-res-mobile-css-iphone-4

Changing the size of background images based on the size of the user’s window, using media

queries, which you’ll learn about in Chapter 6

TA B L E 3 .1 background-size browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes, 4+;

3.6 with -moz-

Yes Yes, 5+;

3+ with -webkit-

Yes

www.w3.org/TR/css3-background
www.w3.org/TR/css3-background
www.alistapart.com/articles/supersize-that-background-please
www.alistapart.com/articles/supersize-that-background-please
www.css3.info/liquid-faux-columns-with-background-size
www.css3.info/liquid-faux-columns-with-background-size
http://dryan.com/articles/posts/2010/6/25/hi-res-mobile-css-iphone-4
http://dryan.com/articles/posts/2010/6/25/hi-res-mobile-css-iphone-4

BEYOND THE BASIC BACKGROUND 109

Multiple Background Images on One Element

One of the changes to CSS that has brought web designers the most
joy is the ability to apply multiple background images to a single ele-
ment. In our example, we’ll be able to use this function to make the
paper look a little more realistic—we’ll beat it up a bit by adding some
stain images, as well as adding a thumbtack at the top.

Before CSS3, only one background image per box was allowed, so
you’d have to add an extra div for each extra image and apply one
image to each div. If you could count on other particular blocks
already being inside your divs, such as a h3 element always being the
first nested element, you could apply background images to these
other blocks instead of adding extra divs. However, doing so could be
risky, as you would be relying on certain types of content always being
present and in particular places; if those pieces of content weren’t
there, of course their background images wouldn’t show up.

This nesting divs method wasn’t difficult, but it was messy. It junked
up your markup and increased the pages’ file size. To add more images
later, you’d need to not only change the CSS, but the HTML as well.

With CSS3, you can leave the HTML alone and instead simply list each
background image in the background-image or background property,
separated by commas. Each image can be positioned, repeated, sized,
and otherwise controlled independently.

Figure 3.9 shows the extra images we want to apply to our article div.
To apply them, add a new background declaration under the existing
one in the #paper rule:

#paper {
float: left;
margin: 40px;
padding: 3.2em 1.6em 1.6em 1.6em;
background: url(images/paperlines.gif) #FBFBF9;
 background: url(images/thumbtack.png),
 url(images/stains1.png),
 url(images/stains2.png),
 url(images/stains3.png),
 url(images/stains4.png),
 url(images/paperlines.gif) #FBFBF9;
-moz-background-size: auto 1.6em;
-webkit-background-size: auto 1.6em;
background-size: auto 1.6em;

}

N OT E : The line breaks

and indentions in the

background pr -

erty are just there to

make the CSS easier

to read. You can write

everything on one line,

or not—it works the

same regardless.

CHAPTER 3: NOTEBOOK PAPER110

The first background declaration will continue to be used by IE and
other browsers that don’t support multiple background images.
Because they don’t understand the syntax of the second background
declaration, they’ll ignore it. Browsers that do support multiple back-
ground images will override the first declaration with the second.

The background images are layered on top of each other, with the
first declared image put on top of the stack. That’s why the thumbtack
image is listed first and the lines image is listed last.

We’re not quite done yet, though. We haven’t told the browser how we
want to repeat, position, and size each image. To do this, treat each
snippet between the commas as if it were its own standalone back-
ground shorthand property, and write each of the background-related
properties in it accordingly. Figure 3.10 shows all the pieces that can
go in the background shorthand property. The order matters for some
and not for others, so I recommend sticking with the order shown
in 3.10 just so you don’t get confused or accidentally make a mistake.
(I know I would otherwise!)

Using the order shown in the diagram in Figure 3.10, add the position-
ing and repeat values after each image in the background property:

background: url(images/thumbtack.png) 50% 5px no-repeat,
 url(images/stains1.png) 90% -20px no-repeat,
 url(images/stains2.png) 30% 8% no-repeat,
 url(images/stains3.png) 20% 50% no-repeat,
 url(images/stains4.png) 40% 60% no-repeat,
 url(images/paperlines.gif) #FBFBF9;

F I G U R E 3 .9 The five
extra background
images to add
graphic detail to the
notebook paper

N OT E : he water stain

images shown in igure

3.9 were created with

the Photoshop brushes

by Obsidian Dawn from

www.obsidiandawn.

com/water-stains-

photoshop-gimp-

brushes.

F I G U R E 3 .1 0

The background short-
hand property can
contain multiple layers;
the top layer of this
diagram includes all
the possible pieces of
the property (minus
color, which can go only
into the final layer).

www.obsidiandawn.com/water-stainsphotoshop-gimpbrushes
www.obsidiandawn.com/water-stainsphotoshop-gimpbrushes
www.obsidiandawn.com/water-stainsphotoshop-gimpbrushes
www.obsidiandawn.com/water-stainsphotoshop-gimpbrushes

BEYOND THE BASIC BACKGROUND 111

Next, modify the background-size properties to tell the browser that
each image should be sized using its native dimensions, except for the
last (the lines image):

-moz-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
webkit-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
background-size: auto, auto, auto, auto, auto, auto 1.6em;

Each comma-separated value matches up with the comma-separated
value at the same spot in the background property’s value list.

Although you can technically include background-size informa-
tion in the background shorthand property, it won’t work right now.
Older versions of Firefox and Safari need background-size declared
using the vendor-prefixed properties, and although Opera, Chrome,
Safari 5, Firefox 4, and IE 9 might accept background-size in the
background property, adding it would break those older versions of
Firefox and Safari. So, to keep it working everywhere, and to keep
yourself from confusing the values for background-position and
background-size (very easy to do!), keep background-size written
separately from background.

Save your page and view it in an up-to-date browser. You should still see
the text aligned with the notebook paper lines, but also see four stains
scattered across the paper and a thumbtack at the top (Figure 3.11).

F I G U R E 3 .1 1 All six background images show at various points across the div.

The nice thing about setting each of these images independently,
instead of combining them into one big image that you set on a single
nested div, is that the images can move around based on the size of the
div. No matter what size or dimensions the div has, there will be stain
images distributed nicely across it, instead of clustered in one spot.

N OT E : The page with

all the changes to this

point is named paper_1.

html in the exercise files

that you downloaded

for this chapter.

CHAPTER 3: NOTEBOOK PAPER112

THE LOWDOWN ON MULTIPLE BACKGROUND IMAGES

Multiple background images are a new feature of the background and background-image proper-

ties, not a new property itself. These properties are part of the Backgrounds and Borders module,

found at www.w3.org/TR/css3-background.

List each background image in the background-image or background property, separated by com-

mas. The background images are layered on top of each other, with the first declared image put on

top of the stack.

Each image can be positioned, repeated, sized, and otherwise controlled independently. To do so,

include this background styling information with each image URL in the background property, or

add a comma-separated list of values to each independent background property, such as back-

ground-repeat: no-repeat, no-repeat, repeat-x, repeat. Each value in the list matches

up with a value in the list of background images.

Other than layering stain images over a paper background pattern, you might want to use multiple

background images for:

Flexible boxes with fancy or irregular corners or edges that other CSS3 properties like border-

radius can’t handle, such as ornate buttons that would still need images; see http://css-tricks.

com/css3-multiple-backgrounds-obsoletes-sliding-doors

Opening and closing quotation mark images on a blockquote; see http://css.dzone.com/news/

multiple-backgrounds-oh-what-beautiful-thing

The parallax effect, where resizing a window or hovering over a div makes the images appear

to move at different speeds in relation to each other; see www.paulrhayes.com/2009-04/

auto-scrolling-parallax-effect-without-javascript

Making what appears to be a single image stretch across the whole width of a box or page,

while it’s really made up of multiple pieces, such as a landscape image with a sun that you

always want to appear in the top right corner and a tree that you always want to appear in the

bottom left corner

Distributing images across the full width or height of a box, using percentage positions to keep

them spaced out from each other, such as multiple cloud images over a blue background color

Creating the appearance of an object from real life, using a top image slice, repeating middle

slice, and bottom slice, all on the same box

Applying a CSS3-generated gradient (remember, it goes in the background-image property, not

background-color) along with a background image, to fade out a texture, blend the edges of

an image into a solid color, or reveal portions of an image as the user scrolls down the page; see

http://atomicrobotdesign.com/blog/htmlcss/make-the-thinkgeek-background-effect-using-css3

www.w3.org/TR/css3-background
www.paulrhayes.com/2009-04/auto-scrolling-parallax-effect-without-javascript
www.paulrhayes.com/2009-04/auto-scrolling-parallax-effect-without-javascript
http://css-tricks.com/css3-multiple-backgrounds-obsoletes-sliding-doors
http://css-tricks.com/css3-multiple-backgrounds-obsoletes-sliding-doors
http://css.dzone.com/news/multiple-backgrounds-oh-what-beautiful-thing
http://css.dzone.com/news/multiple-backgrounds-oh-what-beautiful-thing
http://atomicrobotdesign.com/blog/htmlcss/make-the-thinkgeek-background-effect-using-css3

BEYOND THE BASIC BACKGROUND 113

TA B L E 3 . 2 Multiple background images browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes, 3.6+ Yes, 10.5+ Yes Yes

WO R K A R O U N D S FO R N O N - S U P P O RT I N G B R OWS E R S

IE 8 and earlier plus older versions of Firefox and Opera don’t support
multiple background images. In a case like this, where the additional
images are just extra decoration, you don’t have to worry about provid-
ing workarounds. They’ll still see the lined-paper background, which is
a complete image in itself, with no clue that anything’s lacking.

However, there may be times when missing out on the extra images
would create an overall effect that looks incomplete or broken. For
instance, if you’re using multiple background images to create a com-
plex button, with a left, middle, and right slice, the button will look
broken if only one slice can be seen. Be careful about using multiple
background images in cases like these, as you only have a few options
for workarounds:

Use a single fallback image. The simplest workaround for non-
supporting browsers is to provide it with a single background
image, either in a separate background-image declaration listed
before the one using multiple images (the method we’ve used
here) or by using Modernizr. Make sure this single image can stand
on its own. This is easy to implement and doesn’t harm support-
ing browsers, but it won’t provide a sufficient appearance in cases
where the page truly looks broken without the extra images.

Nest divs to hold extra images. A more robust but work-intensive
workaround than the single fallback image is to go back to the old
method of nesting divs and applying separate images to separate
boxes. If you do this, you’ll need to use Modernizr or IE condi-
tional comments to feed different rules to browsers with different
support. Otherwise, you’d get double the backgrounds in brows-
ers that support multiple background images. Of course, if you’re
going to be adding the extra divs and background rules anyway,
you might as well stop using multiple background images at all
and just use this old technique for all browsers, regardless of sup-
port. So I’m not sure that this workaround makes a lot of sense.

Generate the extra elements to hold extra images. A cleaner way
of implementing the “Nest divs” workaround is to use the :before

CHAPTER 3: NOTEBOOK PAPER114

and :after pseudo-elements to generate extra elements, to which
you can then apply extra background images. The article “Multiple
Backgrounds and Borders with CSS 2.1” by Nicolas Gallagher
(http://nicolasgallagher.com/multiple-backgrounds-and-borders-
with-css2) explains how to do this. This would work well for IE 8
and Firefox 3.5, for instance, but IE 6 and 7 don’t support these
pseudo-elements, making this technique fail to work in those
browsers—unless you also added a script to force older versions of
IE to support these selectors. And you’d need to make sure brows-
ers that do support multiple background images don’t see the
images on the pseudo-elements. At this point, the workaround
would be getting pretty complicated! Again, you’ll have to decide
if what may amount to simply extra decoration is worth it for you
and your users.

Use canvas. If you’re comfortable with scripting, you can use the
HTML5 canvas element to draw multiple images on a single ele-
ment. IE 8 and earlier don’t support canvas, but Google’s “explorer-
canvas” script (http://code.google.com/p/explorercanvas) can
make it work. Explaining how to use canvas is beyond the scope
of this book, but Hans Pinckaers’ mb.js script (http://github.com/
HansPinckaers/mb.js) has already done the work for you, making
multiple backgrounds work in IE and older non-IE browsers.

Adding a Graphic Border

Another graphic detail that would be nice to add is a border on the left
side of the paper to make it look like it was torn from a spiral notebook
(Figure 3.12). There are a couple ways we can do this with CSS3.

U S I N G B AC KG R O U N D I M AG E S

One way to add the torn paper edge is by adding it as another back-
ground image, set to repeat down only. But the edge image has trans-
parent areas in it (the holes in the paper), so the lines background
image below it will show through. If our page had a solid background
color instead of a pattern, we could fill the transparent areas of the
edge image with that solid color, obscuring the lines background
image and blending into the page background color seamlessly. But
that won’t work in our page.

Without a solid background color on the page, your only option is to
wrap another div around the paper div, and set the edge image as

F I G U R E 3 .1 2 Torn spiral
notebook-paper edge

http://nicolasgallagher.com/multiple-backgrounds-and-borderswith-css2
http://nicolasgallagher.com/multiple-backgrounds-and-borderswith-css2
http://code.google.com/p/explorercanvas
http://github.com/HansPinckaers/mb.js
http://github.com/HansPinckaers/mb.js

BEYOND THE BASIC BACKGROUND 115

the background on this wrapper div. You could then give the wrap-
per enough left padding to keep the inner div from overlapping the
edge image and obscuring it. This wouldn’t be ideal, since it would
add extra markup, but it would work in all browsers and with all page
backgrounds.

One small disadvantage of setting the edge image as a background is
that we can’t control how it gets clipped at the bottom of the div. It’s
possible that the div would end in the middle of one of the holes in
the edge, which isn’t what a full sheet of real spiral notebook paper
looks like (Figure 3.13). I will admit this is hardly a tragedy—it’s a very
minor, nitpicky problem. But if we can fix the problem easily with
CSS, why not fix it?

The CSS3 solution is to set background-repeat on the edge image to
round—a new value for the property introduced in CSS3. This makes
the browser repeat the image as many times as it will fit, and if it
doesn’t fit a whole number of times, the browser rescales the image
so that it will fit without clipping off at the end.

Unfortunately, only IE 9 and Opera support the round value at the
time of this writing, and Opera does so imperfectly. So, background-
repeat: round is not a usable solution right now. Luckily, we can
forgo using a background image entirely and use the new border-
image property instead.

U S I N G border-image

CSS3 allows you to assign an image to a border, in addition to (or instead
of) a color and line style. The browser will take a single image, slice it
into pieces, and stretch or tile each of those pieces across each border.

For instance, let’s say that Figure 3.14 is the image we want to use for
the borders on a div. We want to use the top 30 pixels of the image
for the top border, the right 25 pixels for the right border, the bot-
tom 27 pixels for the bottom border, and the left 34 pixels for the left
border (Figure 3.15). We need to use these values as both our border
widths and our border image slice locations.

.clouds {
width: 400px;
height: 150px;
border-width: 30px 25px 27px 34px;
border-image: url(clouds.png) 30 25 27 34 stretch;

}

F I G U R E 3 .1 3

With the edge image
as a repeating back-
ground image, it can
get cut off in the middle
of one of the holes.

N OT E : You can actu-

ally use different values

for the border widths

and the correspond-

ing image slice loca-

tions. The browser

will scale each image

slice to fit the border

width it’s applied to.

CHAPTER 3: NOTEBOOK PAPER116

30 px

34 px

27 px

25 px

F I G U R E 3 .1 5 The lines indicate where we want
to virtually slice the image into pieces that
can be tiled or stretched across the borders.

F I G U R E 3 .1 4 This image
has irregular borders that
can be stretched and tiled
using border-image.

The first part of the border-image value is the path to the image,
which works just like any other path in CSS.

Next comes one or more numbers to specify where the browser
should slice the image. In this case, we’re using four numbers, since
we want four different amounts sliced off from each edge. The first
number, 30, is the inward offset from the top edge of the image, in
pixels. The second number, 25, is the inward offset from the right
edge, the third is the offset from the bottom, and the fourth is the
offset from the left. The browser will slice the image at each of these
lines, creating nine images that it applies to each border, each corner,
and the middle of the box.

THE CENTER SLICE

The center slice of the border image is used to cover the entire middle

area of the box, inside the border area. This doesn’t seem very intui-

tive, but it does give you more styling options. If you don’t want the

middle of the border image to obscure the background image or color

beneath it, use your graphics program to make the middle portion of

the image you’re using transparent, and save the image as a transpar-

ent GIF or PNG.

The spec says that this center slice should be discarded by default,

unless you add the word fill to your border-image value. However,

right now no browser seems to support the fill keyword, and they all

“fill” by default, with no option to “not fill.”

N OT E : Strangely, you

must leave the “px”

unit off the slice values

in the

r, you can

use percentages for slice

values, relative to the

image itself; in this case,

you must include the %

sign after the number.

BEYOND THE BASIC BACKGROUND 117

THE LOWDOWN ON THE border-image PROPERT Y

The border-image property is part of the Backgrounds and Borders module, found at www.w3.org/

TR/css3-background. It’s a shorthand property, but you can’t use the individual properties right now,

since no browser supports them declared outside of the shorthand border-image property.

In the border-image property, you specify an image, how far in from each edge you want the

browser to slice the image, and how to repeat each image (except the corners) across its border.

You can use one to four slice values, depending on whether each side needs to be sliced differently.

One value applies the same slice offset to all four sides; two values applies the first to the top and bot-

tom and the second to the right and left; three values applies the first to the top, second to the right

and left, and third to bottom; and four values applies each to an individual side, starting at the top

edge and going clockwise. See Figure 3.15 for a diagram of where the browser slices a border image.

The repeat value can be set to stretch, repeat, round, or space. Using one repeat value will apply

the value to all four sides, while two repeat values applies the first value to the top and bottom

borders and the second value to the left and right sides. A value of repeat will tile all four edges

plus the center; stretch will stretch them to fill the area; round will tile and scale them so each fits

a whole number of times; and space will tile them so each fits a whole number of times and then

evenly distribute the extra space between the tiles.

Remember to always set border-width in conjunction with border-image to create a border area

for the image to draw onto. There is also a border-image-width property, but no browser cur-

rently supports it, nor does any browser currently support border-image-outset.

Sadly, border images don’t conform to curved borders created by border-radius.

Other than creating a torn-edge look, you might want to use border-image for:

Buttons; see http://ejohn.org/blog/border-image-in-firefox

Gradient backgrounds

Scalloped edges to create the effect of a stamp or raffle ticket

Graphic edges to create the effect of a picture frame or certificate; see www.norabrowndesign.

com/css-experiments/border-image-frame.html

A curved or angled edge of a box

Box drop shadows that are curved or angled (box-shadow can do only straight drop shadows,

but you can create an image of an irregular shadow and apply it as a border image)

www.w3.org/TR/css3-background
www.w3.org/TR/css3-background
http://ejohn.org/blog/border-image-in-firefox
www.norabrowndesign.com/css-experiments/border-image-frame.html
www.norabrowndesign.com/css-experiments/border-image-frame.html

CHAPTER 3: NOTEBOOK PAPER118

TA B L E 3 . 3 border-image browser support

IE FIREFOX OPERA SAFARI CHROME

No Partial with

-moz-, 3.5+

Partial, 10.5+ Partial with

-webkit-

Partial

How exactly the browser applies these images depends on the third
part of the border-image property: the repeat value. In this example,
we’re using a value of stretch, which will make the browser stretch
all four border images, plus the center (but not the corners), to
fill the available space (Figure 3.16). You can also set it to repeat
(Figure 3.17), round (Figure 3.18), or space. (The round value is sup-
ported only by Firefox and Opera currently.) No browser currently
supports the space value, so I can’t show you a screenshot!

F I G U R E 3 .1 6 This border-image has been stretched. F I G U R E 3 .1 7 This border-image has been repeated.

F I G U R E 3 .1 8 This border-image has been rounded.

BEYOND THE BASIC BACKGROUND 119

A P P LY I N G T H E TO R N - E D G E I M AG E

Let’s put border-image to use in our page to apply the torn-paper
edge image, shown in Figure 3.12, to the article div. We want to apply
the image only to the left border, so we’ll make that border 50 pixels
wide—the width of the image—and set the other borders to zero:

#paper {
 float: left;
 margin: 40px;

padding: 3.2em 1.6em 1.6em 1.6em;
border-width: 0 0 0 50px;
background: url(images/paperlines.gif) #FBFBF9;
background: url(images/thumbtack.png) 50% 5px no-repeat,
 url(images/stains1.png) 90% -20px no-repeat,
 url(images/stains2.png) 30% 8% no-repeat,
 url(images/stains3.png) 20% 50% no-repeat,
 url(images/stains4.png) 40% 60% no-repeat,
 url(images/paperlines.gif) #FBFBF9;
-moz-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
-webkit-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
background-size: auto, auto, auto, auto, auto,
 auto 1.6em;

}

PL AYING WITH BORDER IMAGES

The border-image property is pretty confusing—I won’t deny it. If, after

walking through the examples provided, you’re still feeling a little unsure, I

highly recommend you check out these border image web tools:

“border-image-generator” by Kevin Decker (http://border-image.

com) allows you to upload any image to see how it will look when

applied as a border image. You can change the slice offsets, bor-

der widths, and repeat method and instantly see how your border

image changes.

“Grokking CSS3 border-image” by Nora Brown (www.norabrowndesign

.com/css-experiments/border-image-anim.html) uses five preset

images and lets you change between a few preset border-image

values to see how the images are affected.

Getting to change values on the fly and see how they affect the visual

output is one of the best ways to learn how a piece of CSS works.

http://border-image.com
http://border-image.com
www.norabrowndesign.com/css-experiments/border-image-anim.html
www.norabrowndesign.com/css-experiments/border-image-anim.html

CHAPTER 3: NOTEBOOK PAPER120

Next, we’ll apply the border image, using the standard border-image
property for Chrome and Opera and the prefixed properties for
Firefox and Safari:

#paper {
 float: left;
 margin: 40px;

padding: 3.2em 1.6em 1.6em 1.6em;
border-width: 0 0 0 50px;
-moz-border-image: url(images/edge.png) 0 0 0 50 round;
-webkit-border-image: url(images/edge.png) 0 0 0 50
¬ round;
border-image: url(images/edge.png) 0 0 0 50 round;
background: url(images/paperlines.gif) #FBFBF9;
background: url(images/thumbtack.png) 50% 5px no-repeat,
 url(images/stains1.png) 90% -20px no-repeat,
 url(images/stains2.png) 30% 8% no-repeat,
 url(images/stains3.png) 20% 50% no-repeat,
 url(images/stains4.png) 40% 60% no-repeat,
 url(images/paperlines.gif) #FBFBF9;
-moz-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
-webkit-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
background-size: auto, auto, auto, auto, auto,
 auto 1.6em;

}

We’ve set each of the slice locations to zero except for the left one;
we don’t want to slice off any from the top, right, or bottom, but we
do want to slice in from the left edge by 50 pixels so that the entire
50-pixel-width of the image is used for the left border.

For the repeat value, we’ve used round to repeat the image but keep it
from ending in the middle of a hole. Since Safari and Chrome don’t
support this value, they treat it as repeat instead, which is an accept-
able second choice.

U S I N G background-clip TO P O S I T I O N I M AG E S

Our edge image is now repeating down the left side of the div, but the
background image is showing through it (Figure 3.19). That’s because,
by default, borders are drawn on top of the background area. You
may have never noticed it before, because usually your borders are
just solid lines, without any transparent pieces. But change your

BEYOND THE BASIC BACKGROUND 121

border-style to dashed and you’ll see what I mean. Border images are
placed the same way.

ORDER OF THE BACKGROUND PROPERTIES

Normally, the order I write the properties in each rule is irrelevant; it’s

just a standard order that I always use, and you can feel free to reorder

the properties however you like. In the case of background-clip, how-

ever, make sure to write it after the shorthand background property, as

shown, because background-clip can be included in the shorthand

background property (see Figure 3.10). If you write background-clip

separately first, and then write the background property without

any background-clip information in it, you’re effectively telling the

browser you want to use the default value of border-box, overriding

the earlier background-clip values.

So why not just include the background-clip value we want in the

shorthand background property? We can’t, for the same reasons we

can’t include the background-size values in the background property

right now: some browsers need prefixes and don’t yet understand the

standard property, by itself or in the background shorthand property.

F I G U R E 3 .1 9 The torn-edge
image repeats down the left side,
but overlaps the background.

CHAPTER 3: NOTEBOOK PAPER122

THE LOWDOWN ON THE
background-clip PROPERT Y

The background-clip property is part of the Backgrounds and

Borders module, found at www.w3.org/TR/css3-background. It controls

under which sections of a box the background is painted.

The allowed values are border-box (the default value to paint back-

grounds under borders), padding-box (to clip backgrounds at the

outer edge of the padding area and not extend under borders), and

content-box (to clip backgrounds at the outer edge of the content

area and not extend under padding or borders). Firefox 3.6 and earlier

don’t support content-box, and use values of border and padding,

not border-box and padding-box; Firefox 4 doesn’t have these

issues. Safari 5 supports the border-box and padding-box values in

the standard background-clip property, but supports only content-

box in the -webkit-background-clip property.

Webkit also supports a value of text, available only in the -webkit-

prefixed property, which makes the text act like a mask on the back-

ground image, obscuring whatever parts of the background image are

not behind the text. It’s a cool effect, but probably won’t make it into

the spec. For more information and examples, see www.css3.info/web-

kit-introduces-background-cliptext, http://trentwalton.com/2010/03/24/

css3-background-clip-text, and http://trentwalton.com/2010/04/06/

css3-background-clip-font-face.

Other than moving a background out from under a border image, you

might want to use background-clip for:

Moving a background color or image out from under a dashed or

dotted border

Creating the appearance of a double border, one made from

the actual border and one made from the padding, by using

content-box

Keeping the background color from bleeding outside the edges

of rounded corners, as sometimes happens in Webkit-based

browsers, by using padding-box; see http://tumble.sneak.co.nz/

post/928998513/fixing-the-background-bleed

www.w3.org/TR/css3-background
www.css3.info/webkit-introduces-background-cliptext
www.css3.info/webkit-introduces-background-cliptext
http://trentwalton.com/2010/03/24/css3-background-clip-text
http://trentwalton.com/2010/03/24/css3-background-clip-text
http://trentwalton.com/2010/04/06/css3-background-clip-font-face
http://trentwalton.com/2010/04/06/css3-background-clip-font-face
http://tumble.sneak.co.nz/post/928998513/fixing-the-background-bleed
http://tumble.sneak.co.nz/post/928998513/fixing-the-background-bleed

BEYOND THE BASIC BACKGROUND 123

TA B L E 3 . 4 background-clip browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes, 4+;

Partial, 1+,

with -moz-

Yes Yes, 3+,

with -webkit-;

Partial, 5+

Yes

Luckily, we can change this default behavior with CSS3. CSS3 lets you
control where backgrounds are placed relative to the borders with
the new background-clip property. The default value, border-box,
makes backgrounds extend under the borders as they’ve always done.
Setting background-clip to padding-box starts the backgrounds inside
the borders, under the padding area:

#paper {
 float: left;
 margin: 40px;

padding: 3.2em 1.6em 1.6em 1.6em;
border-width: 0 0 0 50px;
-moz-border-image: url(images/edge.png) 0 0 0 50 round;
-webkit-border-image: url(images/edge.png) 0 0 0 50

 ¬ round;
border-image: url(images/edge.png) 0 0 0 50 round;
background: url(images/paperlines.gif) #FBFBF9;
background: url(images/thumbtack.png) 50% 5px no-repeat,
 url(images/stains1.png) 90% -20px no-repeat,
 url(images/stains2.png) 30% 8% no-repeat,
 url(images/stains3.png) 20% 50% no-repeat,
 url(images/stains4.png) 40% 60% no-repeat,
 url(images/paperlines.gif) #FBFBF9;
-moz-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
-webkit-background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
background-size: auto, auto, auto, auto, auto,
 auto 1.6em;
-moz-background-clip: padding;

 -webkit-background-clip: padding-box;
 background-clip: padding-box;
}

Chrome, Safari 5, Firefox 4, and Opera use the standard property,
while Firefox 3.6 and earlier and Safari 4 and earlier use the prefixed
versions. Note also that the -moz-background-clip property takes a
value of padding instead of the standard padding-box.

CHAPTER 3: NOTEBOOK PAPER124

Making this change moves the lines background image out from
under the border image (Figure 3.20).

WO R K A R O U N D S FO R N O N - S U P P O RT I N G B R OWS E R S

Browsers that don’t support border-image won’t know what they’re
missing, in this case, as they’ll still see the regular lined-background
image. If you must have the torn edge, you can go back to using a
background image for it on an additional wrapper div, as described
earlier.

If you do this, you’ll either need to remove the border-image from all
the other browsers, or you’ll need to hide the background image from
the browsers that support border-image. I like the second approach,
as it allows you the extra flexibility of having border images without
too much extra work. Simply use Modernizr or IE conditional com-
ments to create a wrapper rule that only certain browsers can see.
This rule would assign left padding and the edge background image:

#wrapper {
 padding-left: 50px;

background: url(images/edge.png) repeat-y;
}

F I G U R E 3 . 2 0

The background-clip
property moves the
background image
out from under the
border image.

BEYOND THE BASIC BACKGROUND 125

The other browsers wouldn’t see this rule at all. They’d still see the
wrapper div in the HTML, of course, but they wouldn’t apply any
styles to it.

Alternately, you could combine the lined paper image with the torn
edge image and apply this merged image to the existing div named
paper. That would allow you to do away with the extra wrapper div,
but it may be more work-intensive to have to maintain different
images for different browsers. Again, you’d need to make sure that
browsers that do support border-image continue to use the two sepa-
rate images—one as the background and one as the border image.

There are a few ways to make border-image work through script-
ing, rather than ditching it in favor of background images. However,
the scripting solutions work only when you’re stretching the border
images, not repeating or rounding them, so a script won’t do in our
case. But if your own project just needs stretched border images,
check out:

PIE by Jason Johnston (http://css3pie.com), described in Chapter 2.
PIE also includes limited support for the border-image property in
IE 6 through 8.

borderImage by Louis-Rémi Babé (http://github.com/lrbabe/bor-
derimage), a jQuery plugin that emulates border-image using VML
for IE and canvas for non-IE browsers. You can find more descrip-
tion of how to use it at www.lrbabe.com/sdoms/borderImage.

Adding a Drop Shadow

In Chapter 2, you learned about the box-shadow property to create
drop shadows beneath boxes. Our notebook-paper article seems like
a good place for it as well, so let’s add it. But we have to be careful—the
drop shadow won’t conform to the ragged edge of the border image,
but rather to the box as a whole. That means that if the drop shadow
shows on the left side of the box, you’ll end up with a strange-looking
straight-edged shadow that’s slightly offset from the jagged paper
edge (Figure 3.21).

F I G U R E 3 . 2 1

Drop shadows conform
to the div’s straight
edge, not to any jagged
lines within border or
background images.

http://css3pie.com
http://github.com/lrbabe/borderimage
http://github.com/lrbabe/borderimage
www.lrbabe.com/sdoms/borderImage

CHAPTER 3: NOTEBOOK PAPER126

To avoid this problem, place the shadow far enough to the right to not
peek out at all on the left edge. Add the following three lines to the
#paper rule:

-moz-box-shadow: 6px 5px 3px hsla(0,0%,0%,.2);
-webkit-box-shadow: 6px 5px 3px hsla(0,0%,0%,.2);
box-shadow: 6px 5px 3px hsla(0,0%,0%,.2);

This creates a shadow below the right and bottom edges of the paper
(Figure 3.22).

Since Safari and Chrome don’t support round for the repeat value
on the border image, it’s possible to get a cut-off hole at the bottom
of the paper, making the shadow underneath it look a little strange
(Figure 3.23). It’s not very noticeable, but if this really bothers you,
remove the -webkit-box-shadow declaration. (Sometimes it’s nice
having each browser declared separately, isn’t it!)

Of course, now the drop shadow will be gone in Webkit-based brows-
ers. To create a drop shadow in Safari and Chrome without using
-webkit-box-shadow, you could create an image of a shadow and
apply it as a border image to the right and bottom borders, using the
-webkit-border-image property.

Embedding Unique Fonts
We’ve done a lot of work on the background of the article so far. Now
let’s apply some extra styling to the actual content. We can use @font-
face rules to make the headings look like they are handwritten—and
this trick even lets IE in on the fun.

N OT E : he page with

all the changes to this

point is named paper_2.

html in the exercise files

that you downloaded

for this chapter.

F I G U R E 3 . 2 2 This drop
shadow works bet-
ter, showing on the
right side of the div.

F I G U R E 3 . 2 3 The drop
shadow in Safari or
Chrome might show up
under an empty hole.

EMBEDDING UNIQUE FONTS 127

What is @font-face?

The @font-face rule is a way of linking to fonts on your server (just
as you can link to images) that the browser downloads into its cache
and uses to style the text on the page. It’s often called font embedding
(though the fonts aren’t truly embedded anywhere), and the fonts
that are “embedded” are called web fonts.

The @font-face rule was actually part of CSS 2 back in 1998, but was
removed from the CSS 2.1 specification. It’s now back, in CSS3, and
finally has widespread browser support.

Until now, without web fonts, web designers have been limited to
the small handful of common fonts installed on all users’ comput-
ers, called web-safe fonts. Designers who didn’t want to use just Arial,
Verdana, or Georgia (among a few more) would have to resort to
images, Flash, or scripting to create their text using unique fonts.
These font-replacement techniques all suffer from accessibility and
usability problems to varying degrees. They’re also much more work-
intensive to implement and maintain, and they can degrade the per-
formance of your pages.

Using @font-face, on the other hand, keeps real text in the page. You
don’t have to depend on the user having the Flash plugin installed or
JavaScript operating. You don’t have to create any images or scripts,
and your users don’t have to download them. The work involved to
implement it can be as simple as writing CSS like this:

@font-face {
 font-family: Raleway;
 src: url(fonts/raleway_thin.otf);
}
h1 {

font-family: Raleway, “HelveticaNeueLt Std Thin”,
¬ “Helvetica Neue Light”, “HelveticaNeue-Light”,
¬ “Helvetica Neue”, Helvetica, Arial, sans-serif;

}

This tells the browser to use the raleway_thin.otf font file to render
the text inside the h1 element (Figure 3.24). If the user’s browser
doesn’t support @font-face or can’t download the file for some rea-
son, the browser simply works through the font stack for a fallback.
The font stack is the list of fonts declared in the font-family property,
which the browser tries to load from the user’s machine, in order,
until it finds a font it can use.

N OT E : For the

considerations t

should go into craft

ing a good font stack,

as well as many links

to proven font stacks

and other resources,

see http://nicewebtype.

com/notes/2009/04/23/

css-font-stacks.

http://nicewebtype.com/notes/2009/04/23/css-font-stacks
http://nicewebtype.com/notes/2009/04/23/css-font-stacks
http://nicewebtype.com/notes/2009/04/23/css-font-stacks

CHAPTER 3: NOTEBOOK PAPER128

As you might have suspected, however, using @font-face is more
complicated in the real world.

Choosing Acceptable Fonts

One of the big issues with web fonts is that not every font ought to be
used in web pages. Some fonts have licensing restrictions that forbid
such a use, while others simply don’t look good on the web.

L I C E N S I N G I S S U E S

When choosing a font to use, read its license—often called an end-user
license agreement (EULA) or terms of use—to see if it allows web font
embedding. Many fonts’ licenses don’t, because when you use @font-
face, the font file is downloaded into the user’s cache, just like images.
The user could go into her cache, take the font file, and install it on
her system. Most font vendors are not interested in simply giving their
products away to the thousands of people who browse your web site.

Of course, not many users are really going to go to this trouble.
But Richard Fink describes the bigger problem font vendors have
with font embedding in his article “Web Fonts at the Crossing”
(www.alistapart.com/articles/fonts-at-the-crossing):

The fear is that once fonts are on the web, they will become a com-
modity, the current model will break, and a devaluation of fonts, in
general, will occur. The fear is that font designers will no longer be
able to charge a print customer, say, $420 for a four-style font family
with a 6–10 user license in a world where fonts are being delivered on
web sites to virtually unlimited numbers of “users” who don’t have to
pay anything at all. What if the web drives down prices in the print
sector and doesn’t generate much revenue on its own?

F I G U R E 3 . 2 4

Using @font-face,
you can display a
non-standard font.

N OT E : here are

ways you can make

your font files more

secure. See http://

subjectiveobject.

com/2

securing-font-face

for a brief discussion

of options, as well as

http://typefront.com.

www.alistapart.com/articles/fonts-at-the-crossing
http://subjectiveobject.com/2009/10/28/securing-font-face
http://subjectiveobject.com/2009/10/28/securing-font-face
http://subjectiveobject.com/2009/10/28/securing-font-face
http://subjectiveobject.com/2009/10/28/securing-font-face
http://typefront.com

EMBEDDING UNIQUE FONTS 129

Unfortunately, most fonts’ licenses were not written with @font-face
in mind, so when you read through a font’s license, it may not say
anything about not embedding fonts. Lack of a restriction doesn’t
mean you have a free pass to use the font. It’s best to err on the side of
caution and not use the font unless it explicitly says that web embed-
ding or redistribution is OK.

This is the case even with free fonts. Just because the font vendor gave
you the font for free doesn’t mean you can redistribute it. Same thing
with the fonts that came with your computer. Again, you have to
check the license to be sure.

Luckily, there are many places online to find fonts whose licenses
allow web font embedding:

The League of Moveable Type (www.theleagueofmoveabletype.
com) is a small but growing collection of free, open-source fonts
that are specifically provided for @font-face use. The Raleway font
used in Figure 3.24 is one of these fonts.

The Webfonts.info wiki has a page called “Fonts available for
@font-face embedding” (http://webfonts.info/wiki/index.
php?title=Fonts_available_for_%40font-face_embedding) that lists
fonts (mostly free) whose licenses permit embedding. But like
most wiki pages, it’s not always as up-to-date and comprehensive
as it could be.

Font Squirrel (www.fontsquirrel.com) provides a large collec-
tion of free fonts whose licenses allow embedding. It also provides
some handy tools for working with @font-face, as we’ll talk about
in a bit.

Google has a library of free fonts for embedding called Google
Font Directory (http://code.google.com/webfonts). You link to one
of the fonts on their server using the Google Fonts API, which has a
number of advantages (see http://mindgarden.de/benefit-of-the-
google-font-api). But you can also download the fonts at http://
code.google.com/p/googlefontdirectory/source/browse and host
them yourself.

Most of the fonts available at Kernest (www.kernest.com) are free,
and all are specifically provided for @font-face use. Some are
hosted by Kernest, but most you can download and host yourself.

exljbris (www.josbuivenga.demon.nl) and Fontfabric (http://
fontfabric.com) both provide a number of fonts for free that

N OT E : Although you

still ought to look at

each font’s license to be

sure, a general guide as

to which foundries allow

font embedding and

font replacement meth-

ods is available at http://

webfonts.info/wiki/

index.php?title= eb_

fonts_licensing_overview.

www.theleagueofmoveabletype.com
www.theleagueofmoveabletype.com
http://webfonts.info/wiki/index.php?title=Fonts_available_for_%40font-face_embedding
http://webfonts.info/wiki/index.php?title=Fonts_available_for_%40font-face_embedding
www.fontsquirrel.com
http://code.google.com/webfonts
http://mindgarden.de/benefit-of-thegoogle-font-api
http://mindgarden.de/benefit-of-thegoogle-font-api
http://code.google.com/p/googlefontdirectory/source/browse
http://code.google.com/p/googlefontdirectory/source/browse
www.kernest.com
www.josbuivenga.demon.nl
http://fontfabric.com
http://fontfabric.com
http://webfonts.info/wiki/index.php?title=Web_fonts_licensing_overview
http://webfonts.info/wiki/index.php?title=Web_fonts_licensing_overview
http://webfonts.info/wiki/index.php?title=Web_fonts_licensing_overview
http://webfonts.info/wiki/index.php?title=Web_fonts_licensing_overview

CHAPTER 3: NOTEBOOK PAPER130

can be embedded on the web, as long as you provide attribution
according to the terms in the EULAs.

All of the fonts at Fonthead (www.fonthead.com) are allowed to be
used with @font-face as well as other text replacement methods.

FontSpring (www.fontspring.com/fontface) sells fonts that can
be used both in a traditional way on your computer and in print
work, as well as embedded on the web with @font-face.

FontShop has created web versions of several fonts, called Web
FontFonts (www.fontshop.com/fontlist/n/web_fontfonts), that you
can buy separately from the traditional versions.

N OT E : As you can

imagine, the list of

resources s

is likely to change and

grow. o see the most

up-to-date list of web

font sources, go to

www.stunningcss3.

com/resources.

LETTING OTHERS DO THE HEAV Y LIFTING

All the sources I listed for @font-face-ready fonts are places where you

can download fonts to host on your own servers and then do the cod-

ing yourself. Another option is to let others do all this work for you using

a font-embedding service, also called a type delivery service or font

hosting and obfuscation service (FHOS).

These services offer a collection of fonts that their distributors have

approved for web use through the service, getting around the licensing

issues of @font-face. These fonts are hosted by the service, making

them difficult or impossible to download and redistribute.

Font-embedding services are easy to use because they provide all the

different font file formats needed for different browsers, as well as

the code for you to add the fonts to your sites. This code may include

JavaScript in addition to CSS in order to make the real fonts impossible

to reuse or speed up their rendering. Most of these services are not free,

though some have free options, and the pricing models vary, such as

subscribing to a collection or paying per font and per site.

These services are popping up all over the place—many type vendors

are creating their own services for their fonts only—but here are the

major players:

Typekit (http://typekit.com) is a subscription-based service where

you pay yearly for access to a collection of fonts, which come from

multiple foundries. The smallest collection is free, but has other

use restrictions.

www.fonthead.com
www.fontspring.com/fontface
www.fontshop.com/fontlist/n/web_fontfonts
www.stunningcss3.com/resources
www.stunningcss3.com/resources
http://typekit.com

EMBEDDING UNIQUE FONTS 131

Fontdeck (http://fontdeck.com) is a subscription-based service, but

you pay for each font you want per year and per site, instead of

paying a yearly fee for a collection of fonts. The fonts come from

multiple foundries.

Kernest (www.kernest.com) has a subscription model similar to

Fontdeck, but nearly all of the fonts are free. The fonts come from

multiple foundries. Some are hosted by Kernest, and most you can

download and host yourself.

Ascender offers two services: Web Fonts from Ascender (www.

ascenderfonts.com/webfonts) and FontsLive (www.fontslive.com).

Both have a subscription model similar to Fontdeck, and the fonts

come from multiple foundries.

WebINK (www.extensis.com/en/WebINK) has a subscription model

similar to Typekit, but you pay a monthly fee based on the fonts’

pricing tier and your bandwidth usage. The fonts come from mul-

tiple foundries.

Webtype (www.webtype.com) has a subscription model similar to

Fontdeck, but pricing varies based on the bandwidth you use. The

fonts come from multiple foundries. You can also purchase tradi-

tional versions of the fonts to download and use on your desktop.

Typotheque (www.typotheque.com/webfonts) offers a service for

fonts from only its foundry, where you pay a one-time fee per font.

Just Another Foundry (http://justanotherfoundry.com/webfonts)

also offers a service for fonts from its foundry only, but you pay a

yearly subscription fee.

Fonts.com Web Fonts (http://webfonts.fonts.com) has a subscrip-

tion model similar to Typekit, but you pay monthly. The highest-

priced plan allows you to also download fonts to use on your

desktop, but you can use the installed font only so long as it’s being

used in a web site through their service.

If you’re thinking about using one of these services, read and use the

list of buyer considerations at the end of the article “Web Fonts at the

Crossing” at www.alistapart.com/articles/fonts-at-the-crossing before

choosing. To see the most up-to-date list of font-embedding services,

go to www.stunningcss3.com/resources.

http://fontdeck.com
www.kernest.com
www.ascenderfonts.com/webfonts
www.ascenderfonts.com/webfonts
www.fontslive.com
www.extensis.com/en/WebINK
www.webtype.com
www.typotheque.com/webfonts
http://justanotherfoundry.com/webfonts
http://webfonts.fonts.com
www.alistapart.com/articles/fonts-at-the-crossing
www.stunningcss3.com/resources

CHAPTER 3: NOTEBOOK PAPER132

R E A DA B I L I T Y A N D R E N D E R I N G I S S U E S

Once you’ve cleared the licensing hurdle, don’t go crazy and start
loading up your pages with all sorts of bizarre fonts. Every time you
choose to use a web font, have a specific reason for picking that font,
beyond just that it looks cool. Make sure that the font truly enhances
the text and doesn’t make it less readable.

Test your web fonts with your actual content to make sure they will
work. The Raleway font shown in Figure 3.24 might work well for
large headings but be too thin to render well and be readable for
body copy. Most commercial fonts were not designed to be viewed at
small sizes on a screen, so in many cases it makes the most sense to
reserve @font-face for headings and continue to use web-safe fonts
like Georgia and Lucida for body copy.

Another aspect of web fonts that can affect legibility is how they are
anti-aliased and hinted. Right now, web fonts are generally more jag-
ged around the edges than traditional fonts, even when anti-aliased,
usually because most were not designed to be viewed on screen.
Higher quality fonts, as well as fonts that were designed for the web,
have better hinting, which, in a nutshell, is a set of instructions in
the font file that adjusts the edges of the characters to line up better
with the pixel grids of our computer screens so they look better to
the human eye. Font format plays a role in this too; TrueType fonts
are generally better hinted than OpenType CFF fonts. The degree of
jaggedness depends not only on the font but on the operating sys-
tem and sometimes the browser; Mac is generally smoother than
Windows, but can look blurry. Windows XP in particular can look
quite bad if the user hasn’t enabled ClearType (Microsoft’s current
technology for improving text rendering on screen).

Not only is the readability of your web fonts important, but so too is
the readability of the fallback fonts in your font stacks. Make sure to
test the fallback fonts so that if the web font doesn’t load, the user still
gets readable and attractive text. You usually want to choose fallback
fonts that have similar proportions to the web font you’re putting at
the front of your font stack. That way, the font size, weight, and other
styles you apply to the text will work well with whatever font the
user sees.

T I P : he Soma

ontFr

(http://somadesign.

ca/projects/fontfriend)

lets you easily test out

the fonts in your font

stacks, including web

fonts, so you can quickly

see how each one will

look on your page.

N OT E : It’s possible to

force differently sized

fonts to match up in size

using the

adjust property, but

currently only Firefox

supports it. ee http://

webdesignernotebook.

com/css/the-little-

known-font-size-adjust-

css3-property, as well

as the links at the

end of the article, for

more information.

http://somadesign.ca/projects/fontfriend
http://somadesign.ca/projects/fontfriend
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property
http://webdesignernotebook.com/css/the-littleknown-font-size-adjustcss3-property

EMBEDDING UNIQUE FONTS 133

MORE ON FONT HINTING AND ANTI-ALIASING

Font hinting and anti-aliasing is a big, technical topic beyond the

scope of this book, but if you’d like to learn more about it, check out

these articles:

“The Ails Of Typographic Anti-Aliasing” by Thomas Giannattasio

(www.smashingmagazine.com/2009/11/02/the-ails-of-typographic-

anti-aliasing) gives a good overview of anti-aliasing, hinting, sub-

pixel rendering, and how various operating systems and browsers

handle rendering web fonts.

“Font Hinting Explained By A Font Design Master” by Richard Fink

(http://readableweb.com/font-hinting-explained-by-a-font-design-

master) and “Font Hinting” by Peter Bil’ak (www.typotheque.com/

articles/hinting) give more detail on how hinting works.

“Font smoothing, anti-aliasing, and sub-pixel rendering” by

Joel Spolsky (www.joelonsoftware.com/items/2007/06/12.html)

compares Apple and Microsoft’s methods for smoothing

on-screen text.

“Browser Choice vs Font Rendering” by Thomas Phinney (www.

thomasphinney.com/2009/12/browser-choice-vs-font-rendering)

explains how browsers’ text rendering is dependent on the operat-

ing system.

Webkit-based browsers let you control the anti-aliasing mode

using their proprietary -webkit-font-smoothing property. See

“-webkit-font-smoothing” by Tim Van Damme (http://maxvoltar.

com/archive/-webkit-font-smoothing) for examples and “Font

Smoothing” by Dmitry Fadeyev (www.usabilitypost.com/2010/08/26/

font-smoothing) for an argument against the property.

N OT E : Luckily, web font

rendering is improving.

or instance, IE 9 uses

Microsoft’s DirectWrite

API to handle text ren-

dering, making web

fonts look very smooth;

Firefox has said it will

use DirectWr

indows versions as

well. Also, more and

more font vendors are

now selling web fonts,

so as

grows in popularity

we will un

see more fonts for sale

that are hinted aggres-

sively for web use.

www.smashingmagazine.com/2009/11/02/the-ails-of-typographic-anti-aliasing
www.smashingmagazine.com/2009/11/02/the-ails-of-typographic-anti-aliasing
http://readableweb.com/font-hinting-explained-by-a-font-designmaster
http://readableweb.com/font-hinting-explained-by-a-font-designmaster
www.typotheque.com/articles/hinting
www.typotheque.com/articles/hinting
www.joelonsoftware.com/items/2007/06/12.html
www.thomasphinney.com/2009/12/browser-choice-vs-font-rendering
www.thomasphinney.com/2009/12/browser-choice-vs-font-rendering
http://maxvoltar.com/archive/-webkit-font-smoothing
http://maxvoltar.com/archive/-webkit-font-smoothing
www.usabilitypost.com/2010/08/26/font-smoothing
www.usabilitypost.com/2010/08/26/font-smoothing

CHAPTER 3: NOTEBOOK PAPER134

Browser Support

So once you’ve chosen a font that has the correct license and is leg-
ible on the web, all you need to do is link to it in an @font-face rule as
shown earlier and you’re done, right? Well, not quite. The @font-face
rule has good browser support, but different browsers want you to
use different font file types.

TrueType (TTF) and OpenType (OTF) font files, such as the ones you
probably already have on your computer, work in most browsers.

IE supports @font-face as far back as version 4, but IE 4 through 8
support it only if you use a proprietary font format called Embedded
OpenType (EOT). EOT is technically not a font format; it’s a com-
pressed copy of a TTF font that uses digital rights management (DRM)
to keep the font from being reused.

The only type of font file that works on Safari on iOS (the browser on the
iPhone, iPod Touch, and iPad, and often called “Mobile Safari”) is SVG
(Scalable Vector Graphics). SVG also works on Chrome, desktop Safari,
and Opera, but not Firefox. You’re probably most familiar with SVG as
a vector graphics format, but an SVG file can contain font information
too—after all, each character in a font is really just a vector drawing.

Using these three formats—TTF or OTF, EOT, and SVG—will make your
unique fonts show up in every browser that supports @font-face. But
you should also include a fourth format, WOFF, for future compatibility.

WOFF, which stands for Web Open Font Format, was introduced in
2009. Like EOT, WOFF is not technically a font format, but rather a
compressed wrapper for delivering TTF or OTF fonts. Unlike EOT,
however, WOFF contains no DRM. So far, the only browsers that

F I G U R E 3 . 2 5 Arial
(center) and Calibri
(bottom) are too small
to be the best fall-
backs for the Junction
(top) web font.

F I G U R E 3 . 2 6

Trebuchet MS matches
up well with Junction,
with Lucida Sans
Unicode being a
good runner-up.

N OT E : For more infor

mation on SVG fonts,

see “About onts in

SVG” by Divya Manian

about-fonts-in-svg.html).

N OT E : Learn more

about WOFF at www.

w3.org/ onts WOF FAFF

http://nimbupani.com/about-fonts-in-svg.html
http://nimbupani.com/about-fonts-in-svg.html
www.w3.org/Fonts/WOFF-FAQ
www.w3.org/Fonts/WOFF-FAQ

EMBEDDING UNIQUE FONTS 135

support WOFF are Firefox 3.6 and later, Chrome 6, and IE 9, but the
other major browsers are all working on adding support for it, and
many font vendors have also expressed support. The WOFF specifica-
tion became a W3C working draft in July 2010, so it’s now officially on
its way to becoming the standard web font format. Going forward, it’s
the one to use.

But don’t get too overwhelmed by all these acronyms and browsers.
As you’ll learn in the next section, it’s easy to create all the differ-
ent formats you need. Check out Table 3.5 for a summary of which
browsers support which font types.

TA B L E 3 . 5 @font-face file types browser support

WOFF OTF TTF SVG EOT

IE 9 no 9 no 4

Firefox 3.6 3.5 3.5 no no

Opera no 10 10 10 no

Opera Mobile no 9.7 9.7 9.7 no

Safari no 3.1 3.1 3.1 no

Chrome 6 4* 4* 0.3 no

Safari on iOS no no no 3.1 no

* Chrome 3 supported OTF and TTF fonts, but not by default—you had to do a command-line switch to
enable it.

Each browser version number noted in Table 3.5 is the earliest—not the only—version of that browser to
support that type.

Converting Fonts

Some providers of @font-face-ready fonts supply you with all the dif-
ferent font formats you need for the different browsers. For instance,
Font Squirrel offers something they call “@font-face kits,” each of
which includes the original TTF or OTF font, an SVG version, a WOFF
version, an EOT version, and a sample style sheet and HTML page
showing the @font-face rules you need to place in your CSS. You can
download these kits at www.fontsquirrel.com/fontface.

Even better is Font Squirrel’s @font-face Kit Generator (www.
fontsquirrel.com/fontface/generator). You can upload your font
and convert it to whichever formats you wish. You can also control
the CSS syntax it outputs, subset the characters to reduce file size,
and use more options to fine-tune the fonts (Figure 3.27).

N OT E : The compres-

sion in EOT and WOFF

files is lossless. These

fonts should look just

as good as their TTF

or OTF originals.

N OT E : This is a rapidly

changing area of

support. See http://

webfonts.info/wiki

index.php?title=%40font-

face_browser_support

and www.stunningcss3.

com/resources for the

latest information.

http://webfonts.info/wiki/index.php?title=%40fontface_browser_support
http://webfonts.info/wiki/index.php?title=%40fontface_browser_support
http://webfonts.info/wiki/index.php?title=%40fontface_browser_support
http://webfonts.info/wiki/index.php?title=%40fontface_browser_support
www.stunningcss3.com/resources
www.stunningcss3.com/resources
www.fontsquirrel.com/fontface
www.fontsquirrel.com/fontface/generator
www.fontsquirrel.com/fontface/generator

CHAPTER 3: NOTEBOOK PAPER136

The files Font Squirrel produces are usually all you’ll need, but there
are a couple of other tools worth mentioning that will optimize your
EOT and SVG files even further. EOTFAST is free desktop software
(download at http://eotfast.com) that converts TTF files into com-
pressed but lossless EOT files; the EOT files that Font Squirrel pro-
duces are not compressed. The command-line tool ttf2svg (http://
xmlgraphics.apache.org/batik/tools/font-converter.html) converts
TTF files into same size or smaller SVG files; you need to have Java and
the Java SVG toolkit Batik installed on your system to run it.

F I G U R E 3 . 2 7

Font Squirrel’s
@font-face Kit
Generator

http://eotfast.com
http://xmlgraphics.apache.org/batik/tools/font-converter.html
http://xmlgraphics.apache.org/batik/tools/font-converter.html

EMBEDDING UNIQUE FONTS 137

Using @font-face

Let’s finally put @font-face to use in our page. Since it looks like note-
book paper, a font that simulates handwriting seems appropriate. I
picked Prelude, a casual cursive font, for the headings (Figure 3.28).
We’re not going to apply a casual cursive font to the body copy, how-
ever, as that kind of font at small sizes doesn’t look very good and
decreases legibility.

In the exercise files for this chapter, you’ll find a folder named “fonts” that
contains all the eight versions of Prelude that we’ll need for our page: EOT,
SVG, TTF, and WOFF files for both the regular and bold weight of the font.
I created these versions using Font Squirrel’s Generator tool, using the set-
tings shown in Figure 3.27. I then remade the EOT files using EOTFAST to
cut the file size of each EOT roughly in half.

F I G U R E 3 . 2 8

The Prelude font on
the Font Squirrel site

CHAPTER 3: NOTEBOOK PAPER138

L I N K I N G TO T H E FO N TS W I T H T H E @font-face R U L E S

You may notice in Figure 3.27 that there are three choices in the Font
Squirrel Generator for CSS Formats. These refer to three variations
of the @font-face syntax used in the CSS. As with almost everything
in CSS, there are multiple ways to code @font-face to get the same
effect; all three syntaxes use valid, standards-compliant CSS and will
work in the same browsers.

The rationale behind each of these three syntaxes is too complicated
to fully explain here, and not terribly important. Any of the three will
work for our purposes, and the choice really boils down to personal
preference. My preference is the “Bulletproof Smiley” version.

Here’s what the Bulletproof Smiley syntax for the Prelude font
looks like:

@font-face {
font-family: ‘Prelude’;
src: url(‘fonts/preludeflf-webfont.eot’);
src: local(‘ ’),

 url(‘fonts/preludeflf-webfont.woff’) format(‘woff’),
 url(‘fonts/preludeflf-webfont.ttf’)
 ¬ format(‘truetype’),
 url(‘fonts/preludeflf-webfont.svg#webfont’)
 ¬ format(‘svg’);
}
@font-face {

font-family: ‘Prelude’;
src: url(‘fonts/preludeflf-bold-webfont.eot’);
src: local(‘ ’),

 url(‘fonts/preludeflf-bold-webfont.woff’)
 ¬ format(‘woff’),
 url(‘fonts/preludeflf-bold-webfont.ttf’)
 ¬ format(‘truetype’),
 url(‘fonts/preludeflf-bold-webfont.svg#webfont’)
 ¬ format(‘svg’);
 font-weight: bold;
}

Put this Bulletproof Smiley syntax before any of the other CSS rules;
it will work anywhere you put it, but you’ll learn later in the chapter
how putting it at the top of your styles can improve your page’s per-
formance.” You can copy and paste it from paper_final.html in the
exercise files.

N OT E : If you want the

details, click the blue

links under each CSS

format name in the

ont Squirrel Generator

to read the three

articles explaining all

the whys and hows.

EMBEDDING UNIQUE FONTS 139

These two @font-face rules group the regular and bold font faces
into a single font family by declaring them with the same font-family
name, Prelude. Each @font-face rule gives the path to the font files
and, optionally, the style characteristics of an individual face (such as
font-weight: bold or font-style: italic).

Let’s look at just the first @font-face rule for now and go through it
line by line.

The first part of the rule—font-family: ‘Prelude’;—assigns a name
to the font you’re linking to so that you can later refer to this font in
your font stacks. You can make the name whatever you want; it’s just
a shorthand way of referring to a whole bunch of font information
at once.

The second part of the rule—src: url(‘fonts/preludeflf-webfont.
eot’);—gives the path to the EOT version of the font for IE 8 and ear-
lier. This is separated out from the other versions of the fonts because
IE can’t understand a src descriptor with multiple comma-separated
values. It thinks it’s one big path, preventing it from noticing the EOT
and being able to use it when grouped with the other files.

The next part of the rule is a second src value that lists all the font
files for non-IE browsers. Each browser will go through the list until
it finds a format it can use, and then download that file, and only that
file, to display the text. Each font includes a path to the font file, such
as url(‘fonts/preludeflf-webfont.woff’), and a format hint, such
as format(‘woff’). The format hint is optional, but including it alerts
the browsers about the format of each font to keep them from down-
loading ones they can’t use, which would waste bandwidth and slow
page loading.

HITTING THE SERVER

All browsers but IE8 and earlier don’t actually download any font files until one is called for in a font

stack elsewhere in the CSS. So you can declare lots of @font-face rules in your style sheet, but if one

particular page doesn’t have elements that use most of those fonts, for instance, you won’t incur the

hit of a bunch of extra HTTP requests.

IE8 and earlier, on the other hand, download every EOT file as soon as they encounter it. While

you’re testing font embedding, it’s common to include a lot of extra @font-face rules in your style

sheet so you can compare fonts. Be sure to remove any @font-face rules that you don’t end up

using so IE 8 and earlier don’t download the EOT files unnecessarily.

N OT E : There are

more nitty-gritty details

about how this syntax

works in Paul Irish’s

original article at http://

hey’re not

essential to know, but

are interesting if you’re

a web geek like me.

N OT E : The WOFF

format is listed

because it’s the stan-

dard that we want all

browsers to use when

they can. It’s also the

smallest file, so you want

to make sure browsers

that can use it see it first

and therefore do use it.

http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax
http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax
http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax
http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax
http://paulirish.com/2009/bulletproof-font-faceimplementationsyntax

CHAPTER 3: NOTEBOOK PAPER140

But you probably noticed that at the start of the second src value is
local(‘ ’). What in the world does this smiley face do?

The local(‘ ’) part of the src value is there to protect IE. Without it
there, IE would try to read the second src descriptor as one big path,
as explained earlier, which would lead it to get a 404 error. While this
doesn’t stop @font-face from working—IE can still use the separate
EOT—it’s an extra, pointless hit on your server that you don’t want. IE
doesn’t understand the local() syntax, and putting it at the start of
the src value stops it from moving any further into the src value, see-
ing the url() value, and then trying to parse the path.

PROBLEMS WITH local()

Letting users skip downloading a font they already have installed sounds

like such a good and helpful idea—so why not put the real font name in

local() instead of a smiley face character? This is certainly an option.

It’s what Paul Irish’s original “Bulletproof @font-face syntax” did, and you

can still choose to download this syntax from the Font Squirrel Generator.

But before you use the real font name in local(), you should be aware

of a few problems you might run into:

Different fonts sometimes have the same names. It’s possible that the

user will end up seeing a completely different font from the one you

intend. (See http://typophile.com/node/63992 for a discussion of this.)

It’s a very small chance, but some argue that, regardless, giving con-

trol over type to the user’s machine and browser is not wise.

In Chrome, all characters might be displayed as As in boxes if

the local font that you’re referring to was installed on the user’s

system using the font management software FontExplorer X. (Go to

http://snook.ca/archives/html_and_css/font-face-in-chrome to see a

screenshot of this weirdness.)

In Safari, the user might get a dialog box asking permission to use

the local font if it’s being managed by FontExplorer X.

None of these problems are likely to happen very often, but if they do

happen, the effect could be pretty bad. Many web font experts recom-

mend never using local(), or using it only when the font file you’re try-

ing to keep the user from downloading is particularly large.

http://typophile.com/node/63992
http://snook.ca/archives/html_and_css/font-face-in-chrome

EMBEDDING UNIQUE FONTS 141

The local() syntax is perfectly valid CSS, by the way. Its real purpose
in a @font-face rule is to point to a locally installed version of the font
on the user’s machine, so that if the user has the same font as you’re
embedding, he doesn’t have to download the extra file. That’s why
Paul Irish, who came up with the syntax, recommends using a smiley
face: we don’t want to call for a font that might actually exist, and it’s
very unlikely that anyone will ever release a font named .

The second @font-face rule declares the bold versions of the Prelude
font family. It gives the paths to all the bold font files and also sets
the font-weight to bold inside the rule. But the font-family name is
Prelude (not PreludeBold or some other variation), matching the first
@font-face rule. Assigning the same name tells the browser that the
file is the bold version of the same Prelude font family. Now, any time
the browser needs to have bold Prelude text (because of a strong ele-
ment in the HTML or font-weight: bold in the CSS), it doesn’t have
to synthesize the boldness by making the characters thicker, but can
instead use the true bold font files. Using a true bold or italic font face
looks better than having the browser simulate it for you.

D EC L A R I N G T H E FO N T

Adding @font-face rules to your CSS doesn’t actually make the fonts
show up anywhere; it simply links them, so they’re ready to be down-
loaded and used when you need them. Let’s call them up in our h1
and h2 elements. Add Prelude, the name of the font we assigned in
the @font-face rule, to the start of the existing font-family values in
the h1 and h2 rules:

h1 {
margin: -.3em 0 .14em 0;

 color: #414141;
 font-family: Prelude, Helvetica, “Helvetica Neue”,

 Arial, sans-serif;
 font-size: 3.5em;
 font-weight: normal;
}
h2 {
 clear: left;

margin: 0 0 -.14em 0;
 color: #414141;
 font-family: Prelude, Helvetica, “Helvetica Neue”,

 Arial, sans-serif;
 font-size: 2.17em;
 font-weight: bold;
}

N OT E : E doesn’t

always handle this font

style switching within

the @font-face rules

correctly. IE 8 and earlier

don’t use the font when

font-style: italic

is in the @font-face

rule. IE 9 does, but it

synthesizes italic ren-

dering anyway, even if

the font you’re calling

isn’t actually italic.

CHAPTER 3: NOTEBOOK PAPER142

The sans-serif fallback fonts in the font stacks don’t look anything like
the cursive Prelude script, of course. I chose to do this because there
aren’t really any cursive web-safe fonts we can rely on as fallbacks. If
someone is using a browser that can’t do font embedding, I’d rather
they see some nice, clean Helvetica or Arial text than whatever ran-
dom cursive font they might have on their computers.

Note that the h1 rule sets the font-weight to normal and the h2 rule
sets it to bold. This tells the browser to use the regular member of the
Prelude font family (the first @font-face rule) for the h1 elements and
the bold member of the Prelude font family (the second @font-face
rule) for the h2 elements (Figure 3.29).

We now have handwritten cursive text showing in our headings that
is resizable, selectable, and indexable. There are differences in the
anti-aliasing and hinting of the text between browsers and between
Windows and Mac, but the advantages of real text outweigh the
inconvenience of its slight jaggedness in some browsers (Figure 3.30).

TA B L E 3 . 6 @font-face browser support

IE FIREFOX OPERA SAFARI CHROME

Yes Yes, 3.5+ Yes, 10+ Yes Yes

F I G U R E 3 . 2 9

The cursive Prelude
font in the head-
ings on our page

EMBEDDING UNIQUE FONTS 143

THE LOWDOWN ON THE @font-face RULE

The @font-face rule is part of the Fonts module, found at www.

w3.org/TR/css3-fonts.

A @font-face rule gives a font family name (using the font-family

descriptor) that you make up and the path to one or more font files

(using the src descriptor). Optionally, it can also include the style char-

acteristics of an individual face (using font-weight, font-style, and

font-stretch). You can use multiple @font-face rules with the same

font-family name to group faces into one family.

To access the fonts in your @font-face rules, simply add each font

family name to your font stacks in the font-family property.

Other than making text look like handwriting, you might want to use

@font-face for:

Creating a look and feel not possible with standard web-safe fonts

Keeping branding consistent between printed materials (such as a

logo or brochure) and their related web site

Displaying text using non-Latin characters, which often don’t render

well in browser default fonts. Using a font designed for the lan-

guage ensures all the characters display correctly.

A tempting use of @font-face is to use dingbat fonts to create icons

without images. But this has serious accessibility problems. See http://

filamentgroup.com/lab/dingbat_webfonts_accessibility_issues and

http://jontangerine.com/log/2010/08/web-fonts-dingbats-icons-and-

unicode for a discussion of the problems and potential solutions.

F I G U R E 3 . 3 0 Different
platforms and browsers,
such as Firefox 3.6 (left)
and IE 9 (right), display
the anti-aliasing of the
headings differently.

www.w3.org/TR/css3-fonts
www.w3.org/TR/css3-fonts
http://filamentgroup.com/lab/dingbat_webfonts_accessibility_issues
http://filamentgroup.com/lab/dingbat_webfonts_accessibility_issues
http://jontangerine.com/log/2010/08/web-fonts-dingbats-icons-andunicode
http://jontangerine.com/log/2010/08/web-fonts-dingbats-icons-andunicode

CHAPTER 3: NOTEBOOK PAPER144

I M P R OV I N G P E R FO R M A N C E

If you view your page in a browser now, you may notice a lag between
when most of the page loads and when the handwritten font displays.
Webkit-based browsers don’t show the @font-face-styled text until
they’ve finished downloading the font file (Figure 3.31).

In Firefox and Opera, the fallback fonts show for a moment while
the font file is downloaded, and then the browser re-renders the text
with the new font. This is called the Flash of Unstyled Text, or FOUT, a
term quippishly coined by Paul Irish.

These font-loading lags are usually a minor annoyance, but in some
cases they can be quite noticeable and problematic. Fonts for non-
Western languages, such as Chinese and Japanese, can contain thou-
sands of characters and be several megabytes in size; these huge font
files take a long time to download, of course. Also, users on mobile
devices in areas with poor coverage, or at hotels with notoriously slow
connection speeds, may be left waiting for the web fonts to appear for
quite a while.

There are a number of things you can do to minimize or do away with
the FOUT or the invisible text problem in Webkit:

Keep your font file sizes as small as possible to begin with.
Subsetting the characters within each font to include only the
characters that you need can really help in this regard; the Font
Squirrel Generator lets you do this.

Put your @font-face rules at the top of your style sheets. This
increases the chance that the browser will download them before
the other files called for in your CSS, such as background images.

F I G U R E 3 . 3 1

The headings are invis-
ible while Safari or
Chrome downloads
the font files it needs.

T I P : he

adjust property, men-

tioned earlier, doesn’t

lessen the FOUT, TT

makes it less noticeable

because it makes the

size of the fallback font

match up better with the

web font. Again, though,

it works only in Firefox.

EMBEDDING UNIQUE FONTS 145

Get the browser to download the font file as soon as possible by,
for instance, calling it on a hidden element at the very start of your
page. You can adapt many image preloading techniques, such as
the many listed at http://perishablepress.com/press/tag/preload-
images, to work with font files.

Host your fonts elsewhere. By serving your fonts from one com-
mon location, you increase the chance that the visitor already has
the font file in his or her cache, instead of having to download the
same exact font file again from a new location. The font-embed-
ding services listed earlier allow you to do this, as does Google’s
Font Directory, but you can also upload fonts you personally own
to the TypeFront service (http://typefront.com). TypeFront hosts
the fonts you give it, converts them to all the needed formats, and
serves them only to the sites you specify.

Set the Expires header in .htaccess to a date far in the future so
that when a font is downloaded once, it’s cached by the browser
and not requested again for a very long time. This doesn’t help
with the initial page load when the browser first downloads the
font, but it should help on subsequent loads. (See “HTTP Caching”
by Steve Lamm at http://code.google.com/speed/articles/caching.
html for more information.)

Gzip your font files. Stoyan Stefanov found average file-size savings
to be from 40 to 45 percent (see www.phpied.com/gzip-your-font-
face-files). But he also found that this doesn’t really help WOFF
files, which are already very compressed, so this may not help you
much with the FOUT in Firefox (see www.phpied.com/font-face-
gzipping-take-ii). However, gzipping should help Opera avoid or
minimize the FOUT and Safari and Chrome show the text sooner.

Use scripting to hide all the content for a couple seconds while
the browser downloads the fonts. This doesn’t actually speed
up downloading the fonts, of course, but it keeps the user from
ever seeing the FOUT’s disorienting shift in fonts. Paul Irish pro-
vides two different JavaScript options to do this, one of which
uses Google’s WebFont Loader JavaScript library (http://paulirish.
com/2009/fighting-the-font-face-fout).

Our font files already use a subset of all characters and are called at the
top of the CSS, so we’ve covered the most basic @font-face performance
best practices. It’s beyond the scope of this book to add any of the script-
ing or server-side techniques to our page, but this gives you a number of
things to try if you’re having trouble with web font loading times.

http://code.google.com/speed/articles/caching.html
http://code.google.com/speed/articles/caching.html
www.phpied.com/gzip-your-fontface-files
www.phpied.com/gzip-your-fontface-files
www.phpied.com/font-facegzipping-take-ii
www.phpied.com/font-facegzipping-take-ii
http://paulirish.com/2009/fighting-the-font-face-fout
http://paulirish.com/2009/fighting-the-font-face-fout
http://perishablepress.com/press/tag/preloadimages
http://perishablepress.com/press/tag/preloadimages
http://typefront.com

CHAPTER 3: NOTEBOOK PAPER146

The Finished Page
We’ve completed all the styling for the article to make it look like a
piece of notebook paper. In any up-to-date, non-IE browser, you
should see something like Figure 3.32. Compare it to Figure 3.1.

F I G U R E 3 . 3 2

The page with all
CSS3 applied, shown
here in Firefox 3.6.

THE FINISHED PAGE 147

The preview version of IE 9 doesn’t show the torn paper edge, but
otherwise looks like Figure 3.32. IE 8 and earlier are missing most of
the graphic effects, but since they show the lined background image
and the handwritten font, the overall appearance is still attractive and
notebook-paper-like (Figure 3.33). Also, in this case, all versions of IE
up to 8 display almost identically—even 5.5 looks like the screenshot
shown in Figure 3.33.

N OT E : The c -

pleted page showing

all of these effects is

named paper_

html in the exercise

files for this chapter.

F I G U R E 3 . 3 3

IE (version 8 shown
here) doesn’t show
all the CSS3 graphic
effects, but does show
the handwritten fonts.

This page intentionally left blank

4
Styling Images
and Links
by Type
There’s hardly a page on the web that doesn’t have several links

and images on it. Those links might target several different

types of documents besides other web pages, such as PDFs or

video files. Those images might be of several different types,

like photos, illustrations, and charts. Styling images and links

based on their unique type is quite possible without CSS3, but

involves more time, work, and markup. New selectors in CSS3

allow you to target each link or image type individually in a

more specific, streamlined way. Once again, CSS3 comes to

the rescue to improve the efficiency of both your development

habits and your pages.

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE150

WHAT YOU’LL LEARN

We’ll be adding icons to links based on their type, as well as styling photos differently than other

types of images, using these CSS3 selectors:

The “end of the value” ($) attribute selector

The “somewhere in the value” (*) attribute selector

The Base Page
The page that we’ll be using as our starting point is the finished page
from Chapter 3 (Figure 4.1). It contains a lot of links to different types
of files, but all of these links are styled the same right now. It would
be nice if links to certain file types were styled differently, to give the
user a visual cue to the type of document they’re about to open. The
page also contains several images, most of which are photos, but one
of which is a thumbnail of a map. Again, it would be nice to style pho-
tos differently than other images, but right now all these images are
styled the same way.

F I G U R E 4 .1 All of the
links are styled the
same as each other, as
are all of the images.

WHAT ARE ATTRIBUTE SELECTORS? 151

What are Attribute Selectors?
We can add type-based styling to the links and images using attribute
selectors. Attribute selectors are so powerful and useful because they
allow you to target specific elements without needing IDs or classes in
the HTML. Instead, attribute selectors target an element based on the
existence or value of a specific attribute on that element.

For instance, the selector img[alt] is made up of the type selector
img followed by the attribute selector [alt]. All attribute selectors are
designated by square brackets, but what goes in the brackets depends
on what you’re trying to target. The img[alt] selector targets all img
elements that have an alt attribute present. Using this selector while
testing your pages, you could give all images that have alt attributes a
bright green outline, so you could see at a glance which images don’t
have the outline and need alt attributes added.

img[alt] {
border: 3px solid #0C0;

}
<img src=”photos/poe.jpg” width=”320” height=”241”
¬ alt=”My cat Poe”>

N OT E : An attribute

selector doesn’t have

to be used in conjunc-

tion with only type

selectors. You can use it

with any type of sim

or instance,

.warning[title]

combines a class se

tor with an attribute

selector. You can also

use it by itself; a selec-

tor of [title] would

select every single

element that has a

title attribute on it.

F I G U R E 4 . 2 The image
of the cat has an alt
attribute on its img ele-
ment, so it has a green
outline. The image of
the dog doesn’t have
an alt attribute.

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE152

The img[alt] selector is an example of the simplest type of attri-
bute selector—one that checks only for the presence of an attribute,
regardless of its value. It’s one of the four types of attribute selectors
that are in the CSS 2.1 spec (which are shown in Table 4.1).

TA B L E 4 .1 CSS 2.1 Attribute Selectors

ATTRIBUTE SELECTOR FUNCTION

[attr] Matches an element with an attr attribute present, regard-

less of its value.

[attr=val] Matches an element with an attr attribute whose value is

exactly val.

[attr~=val] Matches an element with an attr attribute whose value is a

space-separated list of words, one of which is exactly val.

[attr|=val] Matches an element with an attr attribute whose value is

either exactly val or begins with val immediately followed

by a hyphen.

The W3C calls these CSS 2.1 attribute selectors attribute presence and
value selectors.

CSS3 introduces three new attribute selectors that offer even more
fine-grained control over what you’re trying to target.

TA B L E 4 . 2 CSS3 Attribute Selectors

ATTRIBUTE SELECTOR FUNCTION

[attr^=val] Matches an element with an attr attribute whose value

starts with val.

[attr$=val] Matches an element with an attr attribute whose value ends

with val.

[attr*=val] Matches an element with an attr attribute whose value con-

tains val somewhere within it.

The W3C calls these CSS3 attribute selectors substring matching attribute
selectors because they match a part of a value instead of the whole thing.

Attribute selectors are easiest to understand with live examples, so
let’s add them to our page now to see how they work and start getting
ideas for what their practical uses might be.

T I P : If you start getting

confused when writing

a complex selector, plug

it into the SelectORacle

at http://gallery.

theopalgroup.com/

selectoracle for a plain

English (or panish)

translation of what the

selector will target.

http://gallery.theopalgroup.com/
http://gallery.theopalgroup.com/

INDICATING FILE TYPES WITH DYNAMICALLY ADDED ICONS 153

NOT MATCHING

A really handy attribute selector to have would be one for “not match-

ing” that could style all the elements that don’t match the value given.

For instance, you could use it to create a rule that says “find all input

elements that don’t have the type attribute set to submit,” in order to

target and style all non-submit-button input elements.

Unfortunately, there’s no such attribute selector, but there is a way to

emulate its behavior using the :not selector, a new pseudo-class in

CSS3. It targets elements that do not match whatever you put into it.

So the selector input:not([type=submit]) tells the browser “find

all input elements that don’t have their type attribute set to submit.”

The :not selector is supported by all major browsers except IE 8 and

earlier. Learn more about it at http://kilianvalkhof.com/2008/css-xhtml/

the-css3-not-selector.

If you’re using a JavaScript framework, it may include this sort of “not

matching” attribute selector; for instance, see http://api.jquery.com/

attribute-not-equal-selector for jQuery and http://mootools.net/docs/

core/Utilities/Selectors for MooTools.

Indicating File Types with
Dynamically Added Icons
To get started, download the exercise files for this chapter at www.
stunningcss3.com and open selectors_start.html in your code editor
of choice. Its CSS is contained in a style element in the head of the
page. This is the same page used in Chapter 3, so you can also use
your final page from Chapter 3 as your starting point here.

Throughout the page, there are links to documents to download,
in these file types:

PDF � MOV

DOC � JPG

In some cases, I’ve indicated the file type to the user by putting it in
parentheses at the end of the link text, such as “Map of trip locations
(PDF).” I want to give users a heads-up that clicking on certain links
might launch additional applications, like Acrobat Reader, or prompt

www.stunningcss3.com
www.stunningcss3.com
http://kilianvalkhof.com/2008/css-xhtml/the-css3-not-selector
http://kilianvalkhof.com/2008/css-xhtml/the-css3-not-selector
http://api.jquery.com/attribute-not-equal-selector
http://api.jquery.com/attribute-not-equal-selector
http://mootools.net/docs/core/Utilities/Selectors
http://mootools.net/docs/core/Utilities/Selectors

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE154

them to save a file. But I’m a human being—I may not remember to
add this file-type notice at the end of every link that could benefit
from it. Or what if this page was part of a content-management system
(CMS), and my non-technical client was adding links? He might be
even less likely to remember to add these friendly file-type warnings.

A more foolproof way to add some sort of file-type indicator is to use
attribute selectors, which would have the browser take care of it auto-
matically. Every link ends with a file-type extension, so we can use the
“end of the value” attribute selector to examine the extension and add
the appropriate icon as a background image on the a element.

First, prepare the a elements inside the file-download lists to have
background images added to them:

ul a {
display: block;
min-height: 15px;
padding-left: 20px;
background-repeat: no-repeat;
background-position: 0 3px;

}

This makes the links block elements with a minimum height match-
ing the height of the icon images, so the icons won’t ever get cut off.
It also adds left padding to create empty space for each icon to sit in.
Each icon background image will display only once (no-repeat) and
be positioned three pixels down from the top of the link (0 3px) to
align it with the top of the text.

WHEN TO ADD QUOTATION MARKS?

You need quotation marks around the value of an attribute selector

only when it’s a string. If the value is an identifier, you don’t need the

quotation marks, but they don’t hurt either. The difference between

identifiers and strings basically comes down to identifiers being more

limited in the characters they can contain and start with. See www.

w3.org/TR/CSS21/syndata.html#value-def-identifier for the definition of

an identifier and www.w3.org/TR/CSS21/syndata.html#strings for the

definition of a string.

If you don’t want to have to remember all this, play it safe by always

putting quotation marks around your attribute selector values.

www.w3.org/TR/CSS21/syndata.html#value-def-identifier
www.w3.org/TR/CSS21/syndata.html#value-def-identifier
www.w3.org/TR/CSS21/syndata.html#strings

INDICATING FILE TYPES WITH DYNAMICALLY ADDED ICONS 155

Now we can add the attribute selectors to target each file type extension:

a[href$=”.pdf”] {
 background-image: url(images/icon_pdf.png);
}
a[href$=”.doc”] {
 background-image: url(images/icon_doc.png);
}
a[href$=”.mov”] {
 background-image: url(images/icon_film.png);
}
a[href$=”.jpg”] {
 background-image: url(images/icon_photo.png);
}

The href$= part of each attribute selector tells the browser “find
every href attribute that ends with,” and then the values in quotation
marks, such as .pdf, give the ending attribute value to match against.
When the browser finds a match, it applies the background image
indicated, adding appropriate icons to all the links (Figure 4.3).

N OT E : These icons

came from the free

famfamfam S

set by ark James at

www.famfamfam.

com/lab/icons/silk.

F I G U R E 4 . 3

Each link now has an
icon beside it to match
its file-type extension.

N OT E : The page with

all the changes to this

point is named selec

tors_1.html in the exercise

files that you down

loaded for this chapter.

www.famfamfam.com/lab/icons/silk
www.famfamfam.com/lab/icons/silk

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE156

SCALING THE ICONS

Instead of using min-height on the links to ensure that their back-

ground icons never get cut off, you could use background-size to

scale the icons with the text. The rule might look like this:

ul a[href] {
 display: block;
 padding-left: 20px;
 background-repeat: no-repeat;

background-position: 0 3px;
 -moz-background-size: 1.2em;
 -webkit-background-size: 1.2em;
 background-size: 1.2em;
}

I haven’t added this CSS to the page because when the browser scales

the icons, they look a little blurry—even when the browser is making

them smaller, not bigger. I don’t think it’s a good idea to use browser-

based scaling on crisp-edged images like these particular icons. But

keep this technique in mind for times when you’re using images with

less well-defined edges, where some blurriness won’t be noticeable.

Alternative Icon Ideas

We’re finished with the styling for the link icons, but you could take
attribute selectors even further if you wanted to.

SAY I T I N ST E A D O F S H OW I N G I T

The icons are a nice little hint to help your users, but if you wanted to
be even more obvious and explicit, you could use generated content
to write out the file-type extension at the end of each link instead of
or in addition to the icons.

You’d first need to make sure that this information wasn’t already
manually written in each link. Then, you could add the following rule,
for example, to write out “(PDF)” after each link to a PDF file:

a[href$=”.pdf”]:after {
content: “ (PDF)”;

}

INDICATING FILE TYPES WITH DYNAMICALLY ADDED ICONS 157

CO M B I N I N G M U LT I P L E AT T R I B U T E S E L EC TO R S

As with almost any other type of selector, you can combine multiple
attribute selectors into one to give you even more fine-grained con-
trol over what you want to target. For instance, what if you wanted to
show the photo icon for links to PNG images, but a chart icon for links
to PNG images that also happened to be charts? Depending on how
your images are named, this selector would work:

a[href$=”.png”][href*=”chart”] {
 background-image: url(images/icon_chart.png);
}

This selector tells the browser “find all links that have ‘.png’ at the end
of their href attributes and have ‘chart’ somewhere in the href attri-
bute.” So all of the following links would get matched:

Fixing IE 6

IE 6 is the only major browser that doesn’t support attribute selectors
and doesn’t show the icons. The only way to work around this is to
add a script that provides support for attribute selectors.

A D D I N G A N I E- F I X I N G S C R I P T

One such script that makes the advanced selectors already present in
your CSS work is Dean Edwards’ script, confusingly named IE7 (http://
code.google.com/p/ie7-js). You can download the script and link to
that local copy, or you can link to the public copy hosted on Google
Code. Linking to the public copy has the advantage that visitors to
your page may already have the script in their cache if they’ve visited
another site linking to it, making the page load faster for them.

Add a link to the public copy of the script in the head of the page,
inside an IE 6-only conditional comment:

<!--[if IE 6]>
<script src=”http://ie7-js.googlecode.com/svn/
version/2.1(beta4)/IE7.js”></script>
<![endif]-->

The script makes IE 6 understand the attribute selectors so the icons
show up, but it does weird things to the spacing and wrapping of the

http://code.google.com/p/ie7-js
http://code.google.com/p/ie7-js

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE158

links. To fix these issues, we need to make the links inline-block and
set white-space to nowrap, but this causes minor problems in other
browsers. So, we’ll use the same conditional comments html tag trick
that we used in Chapter 2 to create a rule that only IE 6 can read.

Go to the opening html tag of the page, and change it to the following
HTML:

<!--[if lt IE 7]><html lang="en" class=”ie6”><![endif]-->
<!--[if IE 7]><html lang="en" class=”ie7”><![endif]-->
<!--[if IE 8]><html lang="en" class=”ie8”><![endif]-->
<!--[if IE 9]><html lang="en" class=”ie9”><![endif]-->
<!--[if gt IE 9]><html lang="en"><![endif]-->
<!--[if !IE]>--><html lang="en"><!--<![endif]-->

Now you can add an IE 6-only rule:

.ie6 ul a {
 display: inline-block;
 white-space: nowrap;
}

IE 6 now displays like the other browsers—as long as JavaScript is
enabled. If an IE 6 user has JavaScript off, she won’t see the icons. This
is fine—they’re an enhancement, not necessary pieces of content. But
with JavaScript off, IE 6 will still read the ul a rule, which adds extra
padding to each link, creating unnecessary empty space between the
links in IE 6. To get rid of this, add an [href] attribute selector to both
the ul a and .ie6 ul a rules:

ul a[href] {
display: block;
min-height: 15px;
padding-left: 20px;
background-repeat: no-repeat;
background-position: 0 3px;

}
.ie6 ul a[href] {
 display: inline-block;
 white-space: nowrap;
}

These rules now target all a elements that have href attributes inside
the ul elements—and since all the a elements have href attributes, the
rules match exactly the same links as before the attribute selector part
was added. But when JavaScript is off and IE 6 doesn’t understand
attribute selectors, it will ignore both rules completely now, getting
rid of the extra padding and other styling that they add.

T I P : If you don’t want

to type all t

open selectors_final.

html from this chapter’s

exercise files, and copy

and paste it from there.

N OT E : he page with

all the changes to this

point is named selec-

tors_2.html in the exer-

cise files for this chapter.

INDICATING FILE TYPES WITH DYNAMICALLY ADDED ICONS 159

U S I N G A J AVA S C R I P T L I B R A RY

An alternative to using the IE7 script as we’ve just done is to use a
JavaScript library or framework that has attribute selectors built into
it, and then write them into your own script to accomplish whatever
effect you want. The downside to this is that your script wouldn’t take
into account the attribute selectors already present in your CSS and
make them work; you’d have to recreate them in your script instead.
But if you’re already writing a script to take care of some other effects
in your pages, it might be better to throw in the selectors you need
instead of adding on the IE7 script to your pages.

The article “Selecting and Styling External Links, PDFs, PPTs, and
other links by file extension using jQuery” (http://dabrook.org/blog/
articles/selecting-and-styling-external-links-or-pdf-ppts-and-other-
files-by-extensi) gives an example of how to use the attribute selec-
tors available in jQuery to create a custom script to add icons to links.
Most major JavaScript libraries, such as jQuery and MooTools, have
attribute selectors built in, and there are a few JavaScript libraries
exclusively devoted to selectors. These include:

YUI Selector Utility (http://developer.yahoo.com/yui/selector)

Sizzle (http://sizzlejs.com)

Sly (http://github.com/digitarald/sly)

There are also some scripts that sit on top of a JavaScript library to
take advantage of its advanced selectors without requiring you to
write your own selectors—they simply detect the selectors you already
have in your CSS and make them work. Keith Clark’s Selectivizr script
(http://selectivizr.com) mentioned in Chapter 1 is a great option.
Simply add the script to your page, plus one of the seven correspond-
ing JavaScript libraries, and attribute selectors will work in IE. If you’re
using jQuery, another option is the jQuery SuperSelectors plugin
(http://github.com/chrispatterson/jquery-super-selectors).

http://dabrook.org/blog/articles/selecting-and-styling-external-links-or-pdf-ppts-and-other-files-by-extensi
http://dabrook.org/blog/articles/selecting-and-styling-external-links-or-pdf-ppts-and-other-files-by-extensi
http://dabrook.org/blog/articles/selecting-and-styling-external-links-or-pdf-ppts-and-other-files-by-extensi
http://developer.yahoo.com/yui/selector
http://sizzlejs.com
http://github.com/digitarald/sly
http://selectivizr.com
http://github.com/chrispatterson/jquery-super-selectors

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE160

Styling Full-size Photos and
Thumbnails Differently
Another great use of attribute selectors in our page is to give the pho-
tos a different style than the map thumbnail. To do this without CSS3,
we could simply give the thumbnail a class and apply unique styles to
this class. This would be quite easy in this particular page. But using
classes is not always so simple in the real world.

The Trouble with Classes

While classes have many legitimate uses, they do have some problems
that make them difficult to use in some situations.

Classes add bulk to your HTML. In our example, adding one class
isn’t going to hurt anyone, but in much larger pages and sites with
more complex styles, a lot of extra classes could be necessary, add-
ing a good chunk to the file size. Any time you can avoid adding
classes and IDs to the HTML and use another way to reliably target
elements instead, you should do so.

Markup may be controlled by a CMS or plugin, making it impos-
sible for you to add classes to the HTML.

Your client may be the one adding content, and you can’t count
on him to remember to assign the proper classes.

You may not be allowed to touch the HTML if you’re just the CSS
developer on a project, or if you’ve been brought into an existing
project just to make a few style updates.

Classes can be time-consuming to add to an existing site with
tons of pages, if you’re trying to go back and add new styles. It’s
much easier to write CSS that takes advantage of whatever HTML
is already there, without your having to go back and add extra style
hooks into the HTML.

STYLING FULL-SIZE PHOTOS AND THUMBNAILS DIFFERENTLY 161

PL ANNING FOR ERRORS

While there’s a possibility that whoever is creating pages might save

images in the wrong folders, I think it’s far more likely that a client would

neglect to assign a class than save an image in a new place away from

the rest of the images. If you want to be extra sure, you can assign

classes as a backup, and then apply the styles to both the classes and

the attribute selectors. That way, if someone forgets to assign a class,

the attribute selector takes care of it, and if someone forgets to save

something in the right place, the class takes care of it. It’s extra work,

but it’s a fail-safe method in cases where you might not be able to

count on either the attribute or the class always being correct. Also, IE 6

will be able to use the class if you’re not using a script to give it support

for attribute selectors.

If you do group together a class selector and an attribute selector, be

aware that IE 6 will ignore the entire rule, even though it should be able

to read and use the class selector portion. (This doesn’t apply if you’re

using a script to give IE 6 support for attribute selectors, of course.) In

order to work around this, you’d need to separate each out into its own

rule, like so:

img[src*=thumbnails] {
 float: left;

margin: 0 20px 10px 0;
}
img.thumbnail {
 float: left;

margin: 0 20px 10px 0;
}

It’s redundant, but if you have to support IE 6 without scripting, it’s your

only option. We’re not going to do it in this example page, not only

because we’re using scripting instead, but also because we’re using

attribute selectors for a decorative, non-essential effect, which I’m fine

with IE 6 users missing out on. But if you’re using attribute selectors for

something more important—or just want to provide a fail-safe—this is

an option you can consider using.

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE162

THE LOWDOWN ON ATTRIBUTE SELECTORS

The attribute selector is part of the Selectors module found at www.

w3.org/TR/css3-selectors. There are seven attribute selectors:

[attr] matches an element with an attr attribute present, regard-

less of its value.

[attr=val] matches an element with an attr attribute whose

value is exactly val.

[attr~=val] matches an element with an attr attribute whose

value is a space-separated list of words, one of which is exactly val.

[attr|=val] matches an element with an attr attribute whose

value is either exactly val or begins with val immediately followed

by a hyphen.

[attr^=val] matches an element with an attr attribute whose

value starts with val.

[attr$=val] matches an element with an attr attribute whose

value ends with val.

[attr*=val] matches an element with an attr attribute whose

value contains val somewhere within it.

The first four are called attribute presence and value selectors and are

part of CSS 2.1. The last three are called substring matching attribute

selectors and are part of CSS3.

The values in attribute selectors can be identifiers or strings; strings

must be enclosed in quotation marks.

Attribute selectors have the same specificity as class and pseudo-class

selectors.

Other than link icons and type-based image styling, you might want to

use attribute selectors for:

Styling different form-field input types uniquely (using

input[type=submit], for instance); see http://dev.opera.com/

articles/view/styling-forms-with-attribute-selectors

www.w3.org/TR/css3-selectors
www.w3.org/TR/css3-selectors
http://dev.opera.com/articles/view/styling-forms-with-attribute-selectors
http://dev.opera.com/articles/view/styling-forms-with-attribute-selectors

STYLING FULL-SIZE PHOTOS AND THUMBNAILS DIFFERENTLY 163

Varying the styling of phrases in different languages (using

[lang|=en], for instance)

Adding a visual indication to elements that have title attributes

set (using [title])

Removing bullets from lists within navigation divs (using

div[id^=nav] to match <div id=”nav-primary”> and <div

id=”nav-secondary”>, for instance)

Styling email links (using a[href^=mailto]); see http://css-tricks.

com/better-email-links-featuring-css-attribute-selectors

Styling links that go to external sites (using a[href^=http] or

a[rel=external]), that are secure (using a[href^=https]),

that go to a specific URL (such as a[href*=”paypal.com”]), that

open in new window (using a[target=”_blank”]), or that go to

your own home page (using a[href=”http://myurl.com”] or

a[href=”/index.html”])

Checking for empty links before launching a site; see

http://fuelyourcoding.com/unconventional-css3-link-checking

Displaying the access key of a link (using a:after { content:

‘[‘ attr(accesskey) ‘]’ })

Displaying the citation source of a blockquote (using

blockquote[cite]:after { content: ‘ - ‘ attr(cite) })

Styling blockquotes differently based on the value of their cite

attributes

Displaying an image’s alternative text as its caption (using

img[alt]:after { content: attr(alt) })

Creating a user style sheet to hide ads on web pages; see http://

24ways.org/2005/the-attribute-selector-for-fun-and-no-ad-profit

Hiding rules from IE 6

TA B L E 4 . 3 Attribute selectors browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 7+* Yes Yes Yes Yes

* IE 7 and later support all the attribute selectors, but are sometimes buggy. Test well.

http://css-tricks.com/better-email-links-featuring-css-attribute-selectors
http://css-tricks.com/better-email-links-featuring-css-attribute-selectors
http://fuelyourcoding.com/unconventional-css3-link-checking
http://24ways.org/2005/the-attribute-selector-for-fun-and-no-ad-profit
http://24ways.org/2005/the-attribute-selector-for-fun-and-no-ad-profit

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE164

Using Attribute Selectors to Target by Type

As long as there is some reliable difference between the HTML used
for the thumbnails and the photos, we can tap into that difference
with attribute selectors. In this case, the distinction is that the map
thumbnail is saved in the folder named “thumbnails” and the photos
are saved in the folder named “photos.” The folder name is part of the
path in the src attribute, so we can use attribute selectors to target
each image type independently via particular src attribute values.

Let’s start by floating the map thumbnail left instead of right:

img[src*=thumbnails] {
 float: left;

margin: 0 20px 10px 0;
}

The * attribute selector tells the browser “find every src attribute that
has ‘thumbnails’ somewhere within it.” This matches the map image:

<img src=”thumbnails/map.png” width=”100” height=”100”
¬ alt=””>

Now let’s add some styling to the photos to make them look like
Polaroid pictures. Add the following new rule:

img[src*=photos] {
padding: 5px 5px 30px 5px;

 background: #fff;
-moz-box-shadow: 3px 6px 8px -4px #999;
-webkit-box-shadow: 3px 6px 8px -4px #999;
box-shadow: 3px 6px 8px -4px #999;

 -moz-transform: rotate(2deg);
 -o-transform: rotate(2deg);
 -webkit-transform: rotate(2deg);
 transform: rotate(2deg);
}

N OT E : he -4px part of

the box-shadow pro -

erty is the spread radius,

which Safari 4 (includ-

ing the version on iOS

3 and earlier) doesn’t

support, making the

shadow fail to appear

in those browsers. You

could remove the spread

radius to fix this, but

that would make the

shadow look not quite

as nice in Safari 5 and

Chrome, which do su

port it. It’s up to you!

F I G U R E 4 . 4 The map
thumbnail is now float-
ing left, instead of right
like the other images.

THE FINISHED PAGE 165

Now all the photos have a white border around them, a drop shadow
behind them, and a slight angle (Figure 4.5).

The Finished Page
We’ve completed all the styling on the links and images in our page.
Check out your work in a browser, and compare Figure 4.6 to Figure
4.1. IE 7 and later support attribute selectors, and we’ve given IE 6
a script to provide it with support, so most of the changes we made
are visible in IE. The only bits it doesn’t see are the drop shadows and
rotation of the photos.

F I G U R E 4 . 5 The pho-
tos now have unique
styling to make them
look Polaroid-esque.

N OT E : The com-

pleted page showing

all of these effects is

named selectors_final.

html in the exercise

files for this chapter.

CHAPTER 4: STYLING IMAGES AND LINKS BY TYPE166

F I G U R E 4 . 6 The final
page with unique styl-
ing on the links and
images, thanks to CSS3
attribute selectors.

5
Improving
Efficiency Using
Pseudo-classes
In the last chapter, you learned how to use attribute selectors

to target individual links and images without having to add

IDs or classes to your HTML. In this chapter, you’ll learn

about more CSS3 selectors that can help you keep your code

clean and lean, as well as avoid the need for JavaScript or

Flash. We’ll use them to apply more visual enhancements

to both the speech bubbles and article page, and then top it

off with some CSS-controlled animation and transitions to

enhance usability.

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES168

WHAT YOU’LL LEARN

We’ll create alternating styles for the speech bubbles and the photos in the article page, as well as

create a table of contents that highlights the current section of the article, and we’ll do it using these

pieces of CSS3:

The :nth-child() pseudo-class to select alternating elements

The :nth-of-type() pseudo-class to select alternating elements of a certain type

The :last-child pseudo-class to style the last element of a list differently

The :target pseudo-class to style the target of a URL containing a fragment identifier

Transitions to change the value of a property gradually instead of abruptly

Animations to control more complex visual changes

Targeting Specific Elements
Without Using IDs or Classes
Just like attribute selectors, pseudo-classes and pseudo-elements can
be used to select specific elements in the HTML without assigning
those elements IDs or classes, keeping your markup cleaner. Pseudo-
classes and pseudo-elements target pieces of HTML that either don’t
exist as standalone elements, or do exist but have a unique character-
istic that you can’t target with the other simple selectors. For instance,
you can use the :first-line pseudo-element to format the first line
of a paragraph, even though that first line doesn’t have HTML tags
wrapped around it. In this way, some pseudo-classes and pseudo-
elements are even more powerful than attribute selectors, because
they allow you to target elements that could never have an ID or class
added to them to begin with.

Pseudo-classes and pseudo-elements as a whole are not new, or par-
ticular, to CSS3, but CSS3 added several individual pseudo-classes
that allow us even more precise control over what parts of the docu-
ment we want to target. Many of these new selectors are structural
pseudo-classes.

TARGETING SPECIFIC ELEMENTS WITHOUT USING IDS OR CLASSES 169

WHAT’S THE DIFFERENCE BET WEEN A
PSEUDO-CL ASS AND A PSEUDO-ELEMENT?

The simplest way to remember the difference is this: pseudo-classes

select HTML elements that could have classes added to them, while

pseudo-elements select things that aren’t HTML elements at all.

The four pseudo-elements in CSS are ::first-line, ::first-letter,

::before, and ::after. All of these are fragments of other HTML

elements, not individual elements themselves. They’re not part of

the document tree, so the only way to target them is with pseudo-

element selectors.

In terms of syntax, in CSS3, pseudo-classes start with one colon

and pseudo-elements start with two. (They used to both have one,

and this syntax still works.) You can have only one pseudo-element

per selector, and it has to come at the end (for instance, #article

p::first-line); pseudo-classes don’t have these restrictions.

New Structural Pseudo-classes

CSS3 introduces the concept of “structural pseudo-classes” to target
elements in the document tree based on unique characteristics of the
elements, such as relative placement. For instance, the :first-child
pseudo-class targets an element that is the first child element of its
parent element. This child element is a standalone HTML element in
the document tree, but what makes it unique is that it’s first, and it’s
this unique characteristic that we want to be able to select by, without
having to add a class or ID.

All of the structural pseudo-classes are based on the document tree,
also called the document object model (DOM), so let’s have a quick
refresher on what that is. The document tree is the hierarchical struc-
ture of the HTML page, made up of elements, attributes, and text,
each called a node. It contains multiple levels because elements are
nested inside each other (Figure 5.1). Elements nested directly inside
other elements are called children of those outer elements; they’re also
descendants, along with elements that are nested further down. The
outer elements are called parents (if one level up) or ancestors (if two or
more levels up). Elements that are nested at the same level with each
other—in other words, they have the same parent—are called, predict-
ably, siblings. An element can be many or all of these things at once,

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES170

just like you can be someone’s child and someone else’s parent at the
same time; the terms are all relative to where a certain element is in
relation to a certain other element.

div

h1 pp

em lili

img

li

ul

div

html

body

Now that we’ve gotten all that terminology down, we can see all the
ways we can establish relationships among the elements. Table 5.1
shows the structural pseudo-classes.

TA B L E 5 .1 Structural pseudo-classes

PSEUDO-CLASS DESCRIPTION

:root Selects the element that is the root of the document. In HTML, this

is always the html element.

:nth-child() Selects based on position within the list of its parent’s children.

:nth-last-child() Same as :nth-child(), but the counting for the position number is

done from the last child upward instead of the first child downward.

:nth-of-type() Selects based on position within the list of its parent’s children, but

only counting children of a certain type (such as p, img, etc.).

:nth-last-of-type() Same as :nth-of-type(), but counting from the last child of the

specified type instead of the first.

:first-child Selects the first child of a parent element. (In Figure 5.1, the h1 ele-

ment is a first child.)

:last-child Selects the last child of a parent element. (In Figure 5.1, the img ele-

ment is a last child.)

:first-of-type Selects the first sibling of its own type in a parent element. (In Figure

5.1, the first p element would be selected by p:first-of-type.)

:last-of-type Selects the last sibling of its own type in a parent element.

:only-child Selects an element that is the only child of its parent. (In Figure 5.1,

the ul element is an only child.)

:only-of-type Selects the only element of its own type in the parent element.

:empty Selects elements that have no children elements or text inside them.

F I G U R E 5 .1 A sample
document tree, show-
ing ancestor, descen-
dant, parent, child,
and sibling elements

TARGETING SPECIFIC ELEMENTS WITHOUT USING IDS OR CLASSES 171

Other than the :first-child pseudo-class, which is part of CSS 2.1,
all of these structural pseudo-classes are new to CSS3. They offer us a
whole host of new ways to target elements very precisely.

Back to the Speech Bubbles: Alternating Colors

We can use the :nth-child() pseudo-class to make every other speech
bubble in our comments page from Chapter 2 have a different back-
ground color. And we’ll do this without using classes or JavaScript.

H OW :nth-child() WO R KS

One of the most powerful and useful structural pseudo-classes is
:nth-child(). I already mentioned that it selects an element based on
its position within the list of its parent’s children; in other words, it
selects an element based on how many siblings it has before it.

You write the position number of the element you want to select
inside the parentheses of the selector, such as li:nth-child(5). This
selector would match the fifth li element in a list. In addition to num-
bers inside the parentheses (the selector’s argument), you can also use
the keyword odd or even to select every other element in a row, such
as the second, fourth, sixth, and so forth. But where :nth-child() gets
really powerful is when you use a formula as its argument, allowing
you to create more complex alternating patterns or even select specific
blocks of sequential children at a time. The formula has the syntax
an+b, where a is a cycle size that you pick, n is a counter starting at
zero, and b is an offset value that you pick. Here’s an example:

li:nth-child(3n+1)

Since n starts at zero and then increases by one each cycle, this selec-
tor would match:

(3 × 0) + 1 = 1 = 1st list item

(3 × 1) + 1 = 4 = 4th list item

(3 × 2) + 1 = 7 = 7th list item

(3 × 3) + 1 = 10 = 10th list item

And so on!

While you could certainly add classes to the first, fourth, seventh,
and tenth list items, it’s time-consuming to do so, easy to forget to
do, adds to the weight of your pages, and—probably most impor-
tantly—is a pain to maintain. If you ever want to add another list item

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES172

in between existing ones, you have to re-class all the list items from
that point forward, as their position numbers will have all changed.
Using the :nth-child() pseudo-class that keeps track of the position
numbers for you and matches accordingly is far more efficient and
mistake-proof.

Don’t let the math scare you off from using :nth-child(). There are
some great online tools that can help you get a better sense for how
:nth-child() works by letting you play around with values to see how
they affect the styles of the page immediately. My favorite of these
tools is at http://leaverou.me/demos/nth.html, by Lea Verou, which
allows you to test not only :nth-child() but also :nth-last-child(),
:nth-of-type(), and :nth-last-of-type().

Z E B R A ST R I P I N G

One of the most ubiquitous uses of :nth-child() is to make every
other row of a table a different color. This is commonly called “zebra
striping.” It can often be more than just an aesthetic enhancement; it
can increase usability by making it easier to scan across a long table
without losing your place.

Without :nth-child(), you zebra stripe a table by applying a class to
every other row, called something like “even” or “alt”, and then give
this class a different background color. You have to either apply these
classes manually or have a piece of JavaScript do it for you. Neither
solution is as efficient as :nth-child().

You can use :nth-child() formulas to zebra stripe; the formula 2n
would match all the even rows, for instance. But the keywords even
and odd are shortcuts that are easier to use. We’ll use the even key-
word in our blog comments page to make every other speech bubble
a different color.

To get started, download the exercise files for this chapter at www.
stunningcss3.com and open alternate_start.html in your code edi-
tor of choice. Its CSS is contained in a style element in the head of
the page. This is the same page used in Chapter 2, so you can also use
your final page from Chapter 2 as your starting point here.

Right now, all the speech bubbles in this page are the same
shade of greenish-blue (Figure 5.2). This color has the value
hsla(182,44%,76%,.5). Since we’re using HSLA, it’s easy to tweak

N OT E : There’s a little

research that suggests

that zebra striping

isn’t as helpful as you

might think—still useful,

but not a huge boon.

Read more about this

in “Zebra Striping: More

Data for the Case” by

Jessica Enders (www.

alistapart.com/articles/

zebrastripingmoredata

forthecase).

www.alistapart.com/articles/zebrastripingmoredataforthecase
www.alistapart.com/articles/zebrastripingmoredataforthecase
www.alistapart.com/articles/zebrastripingmoredataforthecase
www.alistapart.com/articles/zebrastripingmoredataforthecase
www.stunningcss3.com
www.stunningcss3.com
http://leaverou.me/demos/nth.html

TARGETING SPECIFIC ELEMENTS WITHOUT USING IDS OR CLASSES 173

the values to get a slightly different shade for our alternating color.
Remember that hue values run from 0 to 360, along the spectrum
from red to purple. So if you wanted to make the alternating color a
little more green, you simply use a slightly lower hue value, such as
160 instead of 182. If you wanted to make the alternating color a little
more blue, use a higher hue value, such as 200.

Let’s use a bluer shade for our alternating color. I’ll use 210 for the
hue value to make the color difference more obvious. Add this new
rule to the CSS in the head of the page:

li:nth-child(even) blockquote {
 background-color: hsla(210,44%,76%,.5);
}

Save the page, and view it in an up-to-date browser. You’ll see that the
second and fourth comments are blue, while the first and third are
still greenish-blue (Figure 5.3).

This new shade of blue doesn’t look as good at the same muted satu-
ration level that the greenish-blue shade uses, so let’s bump up the
saturation value to brighten it, and also increase the lightness value a
bit to improve the contrast with the black text:

li:nth-child(even) blockquote {
 background-color: hsla(210,70%,82%,.5);
}

F I G U R E 5 . 2 All of the
comments have the
same greenish-blue
background color.

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES174

Now the alternate color is a brighter shade of blue (Figure 5.4). HSLA
made it easy to pick a complementary color, and :nth-child() made it
easy to apply that color to every other speech bubble. While alternat-
ing the color of blog comments like this doesn’t really have a usability
benefit, as zebra striping table rows often does, you can see how effi-
cient it is to use :nth-child() for selecting elements in a pattern.

TA B L E 5 . 2 :nth-child() browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes, 3.5+ Yes* Yes Yes

* Opera supports :nth-child(), but doesn’t correctly update the styles if more elements are added to
the page, using JavaScript, after it’s loaded. This bug can be fixed by added a :last-child declaration
to the page. See www.quirksmode.org/css/nthchild.html for a demo of this and more information.

N OT E : he completed

page showing these

changes is named

alternate_final.html

in the exercise files

for this chapter.

F I G U R E 5 . 3 The even-
numbered speech bub-
bles now have a muted
blue background color.

F I G U R E 5 . 4 Quickly
tweaking the HSLA
values results in a
brighter shade of blue
on the even-numbered
speech bubbles.

www.quirksmode.org/css/nthchild.html

TARGETING SPECIFIC ELEMENTS WITHOUT USING IDS OR CLASSES 175

THE LOWDOWN ON THE :nth-child()
PSEUDO-CL ASS

The :nth-child() pseudo-class is part of the Selectors module found

at www.w3.org/TR/css3-selectors. It’s a structural pseudo-class that

selects an element based on how many siblings precede it within the

same parent element.

Inside the parentheses of :nth-child(), you write either a number

(to select one particular child), the keyword odd or even (to select

every other child, either odd-numbered or even-numbered), or a for-

mula in the syntax an+b (to select a particular combination of children

you want). In this formula, a is a cycle size, n is a counter that starts at

zero, and b is an offset value.

Negative values are allowed for a and b. If a is 1, you can omit it

(so 1n+3 is the same as n+3). If b is 0, or if a and b are equal, you

can omit the b value (so 2n+0 and 2n+2 are the same as 2n).

For more details on this, see http://reference.sitepoint.com/css/

understandingnthchildexpressions.

Other than zebra striping, you might want to use :nth-child() for:

Styling the first two or more paragraphs of an article differently

(using -n+2, if styling just the first two)

Giving the first ten items in a top-100 list a larger font size (using

-n+10)

Making older blog posts or Tweets in a list have a smaller font size

or fainter color as you move down the list

Creating the appearance of randomness (for instance, making

every third feature box have one background color, every fourth

have another, and so on)

Forcing a line break or margin change at every fourth image thumb-

nail, for instance, to create an image gallery with multiple rows of

thumbnails all in the same HTML list; see http://mondaybynoon.

com/2010/03/18/css3-center-thumbnail-galleries

Styling specific table columns differently (for instance, making the

third column, which contains numbers, have right-aligned text)

Changing the width of side-by-side items based on how many are

there, to always fill the available space; see http://andr3.net/blog/

post/142

www.w3.org/TR/css3-selectors
http://reference.sitepoint.com/css/understandingnthchildexpressions
http://reference.sitepoint.com/css/understandingnthchildexpressions
http://mondaybynoon.com/2010/03/18/css3-center-thumbnail-galleries
http://mondaybynoon.com/2010/03/18/css3-center-thumbnail-galleries
http://andr3.net/blog/post/142
http://andr3.net/blog/post/142

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES176

WO R K A R O U N D S FO R I E

IE 8 and earlier do not support :nth-child(); IE 9 does. In this case,
the alternating colors are a minor visual enhancement that users of
IE 8 and earlier can do without. IE simply ignores the new rule and
keeps all the speech bubbles the same color as before. Nothing looks
broken, incomplete, or ugly.

If you do want to provide a workaround for IE 8 and earlier, how-
ever, you’ll need to use JavaScript. If you’re zebra striping, there are a
myriad of scripts that will add the alternating classes for you. The one
that will be best for you will depend on your project, so Google “zebra
stripe JavaScript” or “zebra stripe PHP” or whatever suits your needs.

Alternately, you can use a script that adds support for advanced selectors
to IE, and then simply use those selectors to accomplish whatever effect
you want, including but not limited to zebra striping. One such script is
Dean Edwards’ IE7.js that we used in the last chapter (http://code.google.
com/p/ie7-js), but you have to upgrade to the IE9.js version of the script
in order to get pseudo-classes to work; the IE7.js version only makes
attribute selectors and a few other selectors work. Another great script
that adds pseudo-class support is Selectivizr (http://selectivizr.com), but
as mentioned in Chapter 4 it also requires the use of one of several sepa-
rate JavaScript libraries like jQuery, MooTools, or DOMAssistant in order
to work. Both of these scripts make IE identify the selectors present in
your CSS and render whatever styles they define.

Also, as explained in Chapter 4, many JavaScript libraries have
advanced selectors like :nth-child() built in, which you can write
into your own scripts to get :nth-child() functionality in IE. This
route wouldn’t take into account the :nth-child() selectors already
present in your CSS; you’d have to recreate them in your script. See
the “Using a JavaScript Library” section in Chapter 4 for links to
JavaScript libraries you can use.

Back to the Photos: Random Rotation

Now that we’ve enhanced our speech bubbles with :nth-child(),
let’s return to the article page we worked on in Chapters 3 and 4 to
see how we can achieve alternating styles on the photos within the
page. Right now, all the photos are rotated in order to make them
appear more realistic. But since they’re all rotated the same amount,
they look very uniform (Figure 5.5). It would be nice to be able to use

http://code.google.com/p/ie7-js
http://code.google.com/p/ie7-js
http://selectivizr.com

TARGETING SPECIFIC ELEMENTS WITHOUT USING IDS OR CLASSES 177

:nth-child() to rotate different photos different amounts to enhance
the appearance of randomness and realism.

F I G U R E 5 . 5 All the photos are
rotated slightly to the right.

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES178

However, if you used the selector img[src*=photos]:nth-child(even)
to rotate all the even-numbered images to the left instead of the
right, you might be surprised to find that the last two images both
rotate right, instead of alternating. This is because the :nth-child()
pseudo-class selects all children of the same parent. The img elements
are siblings with all the p and h2 elements, so all of these elements are
counted for :nth-child(). Even though img is included in the selec-
tor, all that the selector is saying is “Find all the images that have ‘pho-
tos’ in their src attribute. Then apply these styles to the ones that are
even-numbered children.” If you count all the img, p, and h2 elements
in the parent div, you’ll find that the second-to-last photo is child
number 29 of the div, and the last photo is child number 37. Thus, the
:nth-child() rule selecting even-numbered children doesn’t apply to
either of them, and they stay rotated to the right.

What we really need is a selector like :nth-child() but that counts only
elements of a particular type. Lucky for us, CSS3 provides such a selec-
tor: the :nth-of-type() pseudo-class. It works exactly the same as :nth-
child(), but it counts only whatever element you specify in front of it.

Let’s put it to use in our page. Open rotate_start.html from the exer-
cise files for this chapter (or use your final page from Chapter 4). Add
the following new rule to the styles in the head of the page:

img[src*=photos]:nth-of-type(even) {
 -moz-transform: rotate(-2deg);
 -o-transform: rotate(-2deg);
 -webkit-transform: rotate(-2deg);
 transform: rotate(-2deg);
}

Save your page, and view it in a browser to see that every other photo
is now rotated to the left instead of the right (Figure 5.6). The last two
images aren’t angled the same way; they alternate rotation.

You might notice in Figure 5.6 that the first, third, and fifth photos
are rotated to the left, even though the selector says to rotate even-
numbered ones to the left. That’s because there’s another img ele-
ment before all the photos on the page: the map thumbnail. This img
element makes the first, third, and fifth photos the second, fourth,
and sixth images overall. The :nth-of-type() pseudo-class only cares
about the element type when doing its counting—in this case, that ele-
ment type is img. What the full selector is saying is “Find all the images
that have ‘photos’ in their src attribute. Then apply these styles to
those that are even-numbered img element children.”

F I G U R E 5 . 6

The photos now alter-
nate between left
and right rotation,
to look more realistic.

TARGETING SPECIFIC ELEMENTS WITHOUT USING IDS OR CLASSES 179

THE POWER OF :nth-of-type()

If you want to see what heavy lifting :nth-of-type() can do (along

with some other advanced selectors), check out http://csswizardry.

com/2010/04/building-sites-without-using-ids-or-classes by Harry Roberts

for an example of a multiple-column page laid out without using a single

ID or class value. All of the divs are targeted with advanced selectors

instead. It’s not a practical effect, just a demonstration of what’s possible

and a good learning tool for how these selectors work.

THE LOWDOWN ON THE :nth-of-type()
PSEUDO-CL ASS

The :nth-of-type() pseudo-class is part of the Selectors module

found at www.w3.org/TR/css3-selectors. It’s a structural pseudo-class

that selects an element based on how many siblings of the same type

come before it within the same parent element. It takes the same sorts

of values as :nth-child() for its argument (inside the parentheses).

Other than rotating photos, you might want to use :nth-of-type() for:

Creating the appearance of randomness in some way other than

varying the rotation

Alternating images within an article floating left and right

Styling the first one or more paragraphs of an article differently; if

other elements might prevent those paragraphs from reliably being

the first children, such as an h2 or img that sometimes comes first,

:nth-child() won’t work

Alternating styles on terms within a definition list; since each dt ele-

ment may have only one or multiple dd elements following it, you

can’t use :nth-child()

Alternating styles on blockquote elements within an article

TA B L E 5 . 3 :nth-of-type() browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes, 3.5+ Yes* Yes Yes

* Opera has the same bug with :nth-of-type() as it does with :nth-child().

N OT E : E support for

:nth-of-type() is

exactly the same as for

, and the

JavaScript workarounds

are the same as well.

N OT E : The com-

pleted page show

ing these changes is

named rotate

html in the exercise

files for this chapter.

http://csswizardry.com/2010/04/building-sites-without-using-ids-or-classes
http://csswizardry.com/2010/04/building-sites-without-using-ids-or-classes
www.w3.org/TR/css3-selectors

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES180

There’s no way in CSS3 to make the browser count only img elements
that have particular attributes. Any other img elements mixed in with
the photos are going to be used for counting and calculating the child
number. In the case of our page, we’re just trying to make the photos
look random, so having other images interrupt our pattern isn’t a bad
thing. The :nth-of-type() pseudo-class works for our purposes, even
if it can’t select exactly what we might like.

In fact, let’s make the photos look even more random by adding
another :nth-of-type() rule:

img[src*=photos]:nth-of-type(3n) {
 -moz-transform: rotate(1deg);
 -o-transform: rotate(1deg);
 -webkit-transform: rotate(1deg);
 transform: rotate(1deg);
}

This makes every third image angled to the right by one degree. The
photos have a fairly random-looking pattern of rotation now: the first
is rotated negative -2deg, the second 1deg, the third negative -2deg,
the fourth 2deg, and the fifth 1deg (Figure 5.7).

Even though the :nth-of-type() selector may not do exactly what
you expect and want, it still provides a heap of control over what ele-
ments you want to target without having to resort to classes or IDs.

Dynamically Highlighting
Page Sections
You’ve now seen two examples of how CSS3’s structural pseudo-
classes can add visual enhancements to your pages while keeping
your code free of classes and IDs, and without using JavaScript. Other
CSS3 pseudo-classes can also add much more dynamic-looking
effects to your pages, such as highlighting the current section when
you use a within-page link to jump down the page. This is not only a
visual enhancement, but a usability one, as it helps orient the viewer
to where they are in the page.

For instance, when you click on a citation number in a Wikipedia
article, the page jumps down to that note at the end of the page.
Wikipedia highlights the note you clicked on so you don’t have to
locate it among the potentially hundreds of other notes (Figure 5.8).

F I G U R E 5 .7

The rotation is now
more varied, to
look more random
and realistic.

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 181

This is especially helpful in orienting the viewer when the selected
item is too close to the bottom of the page to be brought all the way
up to the top of the browser window.

F I G U R E 5 . 8 Wikipedia uses the :target pseudo-class to highlight the selected footnote in blue.

You can highlight the selected footnote, heading, or section on a page
with JavaScript. But it’s so much more efficient—both in terms of your
development time and in terms of page loading speeds—to do it with
the CSS3 :target pseudo-class.

The :target Pseudo-class

Some URLs have fragment identifiers, represented by an octothorp
(the character #, commonly called a pound sign, number sign, or
hash mark) followed by an anchor name or element ID, to link to a
certain element in the page. The URL http://en.wikipedia.org/wiki/

http://en.wikipedia.org/wiki/Jane_austen#cite_note-21

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES182

Jane_austen#cite_note-21 shown in Figure 5.8 is an example of this
type of URL. The :target pseudo-class selects the element being
linked to, and lets you style it.

On Wikipedia, when you click a footnote number, the li element
for the footnote you’re taken to becomes the target. Here’s how
Wikipedia styles those footnote targets:

ol.references > li:target, sup.reference:target, span.
citation:target {
 background-color: #DEF;
}

We can also use the :target pseudo-class for a similar effect in our
article page.

Adding the Table of Contents

Right now, the article page doesn’t have any fragment identifiers we
can link to. Let’s add IDs to all of the subheads in the page, since they
naturally divide it up into sections.

If you’ve been working along with the rotate_start.html file, you can
continue making changes to it now, or you can open the file target_
start.html from the exercise files for this chapter; both should be the
same. In your page, add id attributes to each h2 element, starting with
the “Derbyshire” one, with the values shown:

<h2 id=”derbyshire”>Derbyshire</h2>
<h2 id=”cotswolds”>Cotswolds</h2>
<h2 id=”daytrips”>Day-trips from the Cotswolds</h2>
<h2 id=”winchester”>Winchester and Surrounding Area</h2>
<h2 id=”london”>London</h2>

Now add a table of contents to the top of the page that will link to
each of these h2 elements. Add the following list right before the
“Itinerary” h2 element:

<ul id=”toc”>
 Derbyshire
 Cotswolds

Day Trips from the Cotswolds
 ¬

Winchester and Surrounding
 ¬ Area
 London

http://en.wikipedia.org/wiki/Jane_austen#cite_note-21

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 183

Save the page, and view it in a browser. The links in the table of
contents should take you down to the corresponding subheading
in the page. We haven’t yet given any special styles to the targeted
or current subheading, but before we do that, let’s style the table of
contents itself.

ST Y L I N G T H E TO C

The table of contents list already has some non-standard styling
because of the existing rules for ul and a elements; the links are all on
one line and spaced out from each other (Figure 5.9). Let’s enhance
the styles further.

Add a background image of a hand-drawn arrow to the list:

#toc {
background: url(images/arrow.gif) no-repeat top right;

 padding-top: 1.6em;
}

Next, get rid of the left padding on the li and a elements and use
right padding instead, so the list as a whole is aligned on the left side:

#toc li {
padding: 0 1.2em 0 0;

}
#toc a {
 padding-left: 0;
}

This is also a good opportunity to use another CSS3 pseudo-class. The
:last-child pseudo-class lets you apply unique styles to the last child
of a parent element. Here, we can use it to remove the right padding
from the last list item:

#toc li:last-child {
 padding-right: 0;
}

N OT E : The page with

all the changes to this

point is named target_1.

html in the exercise files

that you downloaded

for this chapter.

F I G U R E 5 .9 The table
of contents before any
special styling is applied

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES184

Removing this right padding decreases the amount of space the last
list item takes up, reducing the chance that it will drop down onto a
second line before it really needs to. The :last-child pseudo-class is
very handy for removing padding, margins, borders, or other styles
from the last item in a list, div, or table row.

Figure 5.10 shows the results of our styles thus far. The list looks bet-
ter, but is still quite plain. How about we add a little icon or number
in front of each item in the list?

C R E AT I N G N U M B E R “ I CO N S ” W I T H P U R E C S S

To create numbers in front of the list items, we could use an ordered
list (ol element) instead of an unordered list (ul element). But there’s
no way to directly style the list marker numbers that the browser
adds. There are ways to hack around this, but they limit the looks we
can achieve and add junk to the markup.

Another option is to use background images of numbers. This has
the disadvantage, though, of adding five more HTTP requests to the
page. To minimize this, you could use a technique called “CSS sprites”
where you combine all the images into one and then use background
positioning to reveal the portion of this big image that you want to
show on each list item. But even using sprites, you still have to deal
with one extra HTTP request that you don’t really need, plus some
complicated CSS to make the technique work.

Instead of using images, let’s use generated content like we did in
Chapter 2 to insert the numbers for us. But we’ll take it a step further
this time. Instead of hard-coding the actual numbers in the content
property—which would require five different rules for the five differ-
ent list items—we’ll use CSS counters, a CSS 2.1 feature, to dynamically
generate and increment the numbers.

To use counters, you must first create a set of counters with a name of
your choosing, using the counter-reset property:

#toc {
background: url(images/line.png) no-repeat top right;

 padding-top: 1.6em;
counter-reset: list;

}

F I G U R E 5 .1 0 The table
of contents now has
a background image
and better spac-
ing between links.

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 185

MORE ON SPRITES

Although CSS3 makes it possible to do away with many of the images

for which you’ve previously needed sprites, there are still going to be

times when using the sprites background image technique will come in

handy. Here’s where you can learn more:

“CSS Sprites: What They Are, Why They’re Cool, and How To Use

Them” by Chris Coyier (http://css-tricks.com/css-sprites)

“CSS Sprites Workflow” by Chris Coyier (http://css-tricks.com/

css-sprites-workflow)

“CSS Sprites: Useful Technique, or Potential Nuisance?” by

Louis Lazaris (www.smashingmagazine.com/2010/03/26/

css-sprites-useful-technique-or-potential-nuisance)

This establishes a set of counters, arbitrarily named “list,” that you can
now apply to a sequence of elements. (You can also set a base value
to start counting from in the counter-reset property, but it’s zero by
default, which is what I want, so I haven’t included a number here.)
The elements we want to apply the “list” set of counters to are the
sequence of li elements inside the table of contents list. To apply the
counters, use the counter-increment property in the #toc li rule:

#toc li {
padding: 0 1.2em 0 0;
counter-increment: list;

}

This tells the browser that you want to increment the counter on
each li element, but it doesn’t actually display the counter. You need
to use the content property to do that. Create a new rule using the
:before pseudo-class on the li elements to make the counters display
before each list item’s content:

#toc li:before {
 content: counter(list);
}

This tells the browser that the content you want to display is a coun-
ter, and the name of that counter is “list.” And with that, the numbers
magically appear before each list item, starting at one and increment-
ing by one on each new list item (Figure 5.11).

N OT E : So remember: to

use counters, you need to

use three different proper-

ties: counter-reset,

and content. or

more on counters, read

“Automatic numbering

with CSS Counters” by

David Storey at http://dev.

automatic-numbering-

with-css-counters.

http://css-tricks.com/css-sprites
http://css-tricks.com/css-sprites-workflow
http://css-tricks.com/css-sprites-workflow
www.smashingmagazine.com/2010/03/26/css-sprites-useful-technique-or-potential-nuisance
www.smashingmagazine.com/2010/03/26/css-sprites-useful-technique-or-potential-nuisance
http://dev.opera.com/articles/view/automatic-numberingwith-css-counters
http://dev.opera.com/articles/view/automatic-numberingwith-css-counters
http://dev.opera.com/articles/view/automatic-numberingwith-css-counters
http://dev.opera.com/articles/view/automatic-numberingwith-css-counters

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES186

We can style these numbers just like any other pieces of content in our
pages. First, let’s get them on the same line as the text, by floating both
the numbers and text and adding a little left padding to the list items:

#toc li:before {
 content: counter(list);
 float: left;
}
#toc a {
 float: left;
 padding-left: 5px;
}

Now let’s give each number a circular background using border-
radius, in the same shade of blue as the links, but semitransparent:

#toc li:before {
 content: counter(list);
 float: left;
 width: 1.6em;
 height: 1.6em;
 -moz-border-radius: .8em;
 -webkit-border-radius: .8em;
 border-radius: .8em;
 background: #87B3CE;
 background: hsla(203,78%,36%,.5);
}

As explained in the “Creating ovals and circles with border-radius”
sidebar in Chapter 2, you can turn blocks into circles by setting the
same width and height (here, 1.6em) and then setting the border-
radius to half of this value (.8em).

Figure 5.12 shows that the numbers do indeed have circular back-
grounds now, but the text needs some further alignment within those
circles. Add these new declarations to the #toc li:before rule:

color: #fff;
font-family: Arial, Helvetica, “Helvetica Neue”,
sans-serif;
font-weight: bold;
text-decoration: none;
text-shadow: 0 1px 0 hsla(0,0%,0%,.6);
text-align: center;

F I G U R E 5 .1 1 The CSS
counters make incre-
menting numbers dis-
play before the links.

N OT E : E 9 does sup-

port border-radius,

but appears not to

on generated content

(as of this writing), so

the numbers will have

square instead of circu-

lar backgrounds in IE 9.

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 187

Now the numbers look positively image-like (Figure 5.13). We’ve cre-
ated the appearance of icons without needing any images or touching
the HTML.

Browsers that don’t understand generated content will not see the
numbers, let alone their styles (Figure 5.14). In this case, the numbers
are decorative, not essential content, so this is an acceptable instance
of progressive enhancement.

F I G U R E 5 .1 2 Using
border-radius gives
circular backgrounds
to the numbers.

F I G U R E 5 .1 3 With
some CSS3 styling,
the numbers look
like image icons.

N OT E : The page with

all the changes to this

point is named tar

html in the exercise

files for this chapter.

F I G U R E 5 .1 4 IE 6 and
IE 7 (top) don’t show
the numbers, while
IE 9 and IE 8 (bot-
tom) do, but without
all of their styling.

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES188

Changing Background Color
on the Jumped-to Section

All of this work on the table of contents was just a prelude to what
we really came here to do: highlight the section of the page that you
jump to when you click one of the links in the table of contents. The
element that is targeted when you click a link is an h2 element, so the
selector we need is h2:target. Create a new rule with this selector,
and assign it a background color of the same shade of blue used for
the number icons, but at a more semitransparent level:

h2:target {
 background-color: hsla(203,78%,36%,.2);
}

It’s as simple as that. Save the page, view it in a browser, and click on
one of the links. The corresponding heading will display a semitrans-
parent light blue background (Figure 5.15).

F I G U R E 5 .1 5

The browser not only
brings the targeted
heading to the top
of the window, but
also applies a back-
ground color.

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 189

To spruce up the appearance a bit, you can add some left padding and
a shadow to the text:

h2:target {
padding-left: 10px;

 background-color: hsla(203,78%,36%,.2);
text-shadow: 1px 1px 2px #fff;

}

We now have a noticeable but not obtrusive highlight on the current
heading to help orient the user when the focus jumps down the page
(Figure 5.16). The style also applies when you enter the page with the
fragment identifier in the URL to begin with.

HIGHLIGHTING THE WHOLE SECTION

In our example page, highlighting the whole section of the article

instead of just that section’s heading would be overkill, but this can

be effective in other instances. To do this, you’d need some element

wrapped around the section, such as a div or section element (natu-

rally!). Give this wrapper element an ID, and then target this ID with the

:target pseudo-class.

An alternate way to do it would be to use an adjacent sibling selector in

conjunction with the :target pseudo-class, such as dt:target + dd.

This only works, however, if you know how many elements will follow

the target, and their types. The example selector given will style one dd

element after the targeted dt, for instance, but wouldn’t style any sub-

sequent dd elements that might exist under that dt element.

N OT E : The page with

all the changes to this

point is named tar

html in the exercise

files for this chapter.
F I G U R E 5 .1 6 The highlighted
heading now has a subtle
text shadow and padding to
move it away from the left
edge of the background strip.

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES190

THE LOWDOWN ON THE :target PSEUDO-CL ASS

The :target pseudo-class is part of the Selectors module found at www.w3.org/TR/css3-selectors. It

allows you to select an element that is the target of a referring URL with a fragment identifier in it.

Other than highlighting the heading of the current page section, you might want to use :target for:

Highlighting footnotes

Revealing explanatory text next to a targeted heading, so the user gets more context for where

she is in the page; see http://web-graphics.com/mtarchive/001454.php

Bringing an item to the front of a stack of overlapping boxes or images; see http://virtuelvis.com/

archives/2003/07/target-fun

Tabbed content boxes; see http://css-tricks.com/css3-tabs

Accordion menus or expanding and collapsing content boxes; see www.paulrhayes.com/2009-

06/accordion-using-only-css and www.thecssninja.com/css/accordian-effect-using-css

Slideshows; see www.dinnermint.org/css/using-css3s-target-pseudo-class-to-make-a-slideshow

and www.nealgrosskopf.com/tech/thread.php?pid=45

Image galleries; see www.tobypitman.com/pure-css-sliding-image-gallery, www.ie7nomore.com/

fun/scroll, and www.ie7nomore.com/fun/slideshow

Modal windows or lightboxes; see http://sixrevisions.com/css/semantic-css3-lightboxes and

www.thecssninja.com/css/futurebox2

Please note that some of these techniques are probably better controlled with JavaScript than

CSS, due to potential accessibility and usability problems with pure CSS versions. That said, they

might be useful in certain limited circumstances or provide you with ideas for other ways to use

:target effectively, so I’ve included them here as a jumping off point for your inspiration.

TA B L E 5 . 4 :target browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 9+ Yes Partial* Yes Yes

* Opera supports :target, but doesn’t remove the :target styling when you use the Back or Forward
buttons to navigate away from the target.

www.w3.org/TR/css3-selectors
http://web-graphics.com/mtarchive/001454.php
http://virtuelvis.com/archives/2003/07/target-fun
http://virtuelvis.com/archives/2003/07/target-fun
http://css-tricks.com/css3-tabs
www.paulrhayes.com/2009-06/accordion-using-only-css
www.paulrhayes.com/2009-06/accordion-using-only-css
www.thecssninja.com/css/accordian-effect-using-css
www.dinnermint.org/css/using-css3s-target-pseudo-class-to-make-a-slideshow
www.nealgrosskopf.com/tech/thread.php?pid=45
www.tobypitman.com/pure-css-sliding-image-gallery
www.ie7nomore.com/fun/scroll
www.ie7nomore.com/fun/scroll
www.ie7nomore.com/fun/slideshow
http://sixrevisions.com/css/semantic-css3-lightboxes
www.thecssninja.com/css/futurebox2

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 191

WO R K A R O U N D S FO R I E

IE 8 and earlier don’t support the :target pseudo-class; the table of
contents links will still work to jump IE users to the corresponding
headings, of course, but the headings won’t be highlighted. Since this
is how most in-page links work, there’s little chance that users of IE 8
and earlier are going to suspect something is missing. Nor is it likely
that users who don’t see the highlight are going to get very disori-
ented in our page of limited content.

In a real page with far more content, however, the highlight could be
a much more important usability feature. Think about the Wikipedia
example with hundreds of footnotes—that highlight really comes in
handy. Or what if the section being jumped to is so close to the bot-
tom of the page that the browser can’t bring it all the way up to the
top of the viewport—this can be pretty disorienting, too. If your page
does warrant an IE workaround, you’ll need to use JavaScript. Here
are a few scripts that would work:

“Suckerfish :target” by Patrick Griffiths and Dan Webb
(http://www.htmldog.com/articles/suckerfish/target)

“Improving the usability of within-page links” by Bruce Lawson
(http://dev.opera.com/articles/view/improving-the-usability-
of-within-page-l)

“Fragment Highlight” by David Dorward (http://dorward.me.uk/
software/frag)

Animating the Change with Pure CSS

Another nice enhancement to our heading highlight would be to
either fade in or fade out the background color; the “movement” cre-
ated by the gradually changing color might direct the viewer’s atten-
tion even more effectively than the abrupt change.

You can do this with JavaScript. One popular implementation of such
an effect is called the “Yellow Fade Technique.” It was named and
started by 37signals in their popular web app Basecamp. When you
made a change, that change would be highlighted with a yellow back-
ground for a moment, and then the yellow color would fade away.
This brought more attention to the item that was changed, enhancing
the usability goal of helping the user orient herself or notice the most
important information on the page. See http://37signals.com/svn/

http://www.htmldog.com/articles/suckerfish/target
http://dev.opera.com/articles/view/improving-the-usability-of-within-page-1
http://dev.opera.com/articles/view/improving-the-usability-of-within-page-1
http://dorward.me.uk/software/frag
http://dorward.me.uk/software/frag
http://37signals.com/svn/archives/000558.php

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES192

archives/000558.php for 37signals’ blog post explaining the Yellow
Fade Technique.

And yes, of course, we can accomplish a similar effect using CSS3
instead of JavaScript. Webkit-based browsers, Opera, and Firefox 4
support transitions, and Webkit-based browsers also support anima-
tions created with pure CSS. Transitions can be used here to fade in
the color when the heading is targeted, and then fade it out again
when the target is removed. Animations can be used to either fade in
or fade out the color—or both, in succession—when the heading is tar-
geted. Let’s check out both options.

WA I T A M I N U T E . T H I S I S M A K I N G M E U N CO M FO RTA B L E .

Before we go any further, let me pause and assuage your potential
anxiety. I know that CSS transitions and animations make some peo-
ple uneasy.

For one thing, they don’t have great browser support. At the time of
this writing, transitions are supported only in Webkit-based browsers,
Opera 10.5 and later versions, and Firefox 4—a small chunk of overall
browser user-share. Animations are supported only in Webkit-based
browsers. Because of this, I think you should use them more sparingly
than most of the other pieces of CSS3. But I don’t think poor browser
support should keep you from using them entirely, as long as you’re
certain that the effects you’re using them for are truly non-essential
enhancements. That way, adding them doesn’t hurt anyone, and only
costs you a little bit of time and effort. Plus, as soon as support does
improve, your pages—and your CSS skills—will be ahead of the curve.

Another concern some people have with CSS transitions and anima-
tions is that both—but particularly animation—tread into the territory
of “behavior,” not “style.” Thus (some argue) these effects should not
be included in CSS; they’re the job of JavaScript, other scripting or
programming languages, or Flash.

I agree with this argument to a point. Animation is very often behav-
ior. But it’s very often style, too. Think about a button with a glow that
pulses. Is this pulsing glow a behavior of the button? Or is it simply
a visual effect—a visual style? Jimmy Cuadra, in his article “CSS3 transi-
tions and animation: Presentation or behavior?” (www.jimmycuadra.
com/blog/12-css3-transitions-and-animation-presentation-or-
behavior), calls these sorts of effects “presentational behavior.”
I like the distinction he makes between presentation and behavior:

www.jimmycuadra.com/blog/12-css3-transitions-and-animation-presentation-or-behavior
www.jimmycuadra.com/blog/12-css3-transitions-and-animation-presentation-or-behavior
www.jimmycuadra.com/blog/12-css3-transitions-and-animation-presentation-or-behavior
http://37signals.com/svn/archives/000558.php

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 193

Instead of thinking of presentation as what things look like and
behavior as what things do, we should think of presentation as any-
thing that doesn’t fundamentally alter the page, and behavior as any-
thing that manipulates document structure or data, or that facilitates
explicit user interaction.

Elliot Swan, in a comment at http://mondaybynoon.com/2009/05/04/
covering-the-implication-and-basics-of-css-animation/#comment-9099,
offers another way to define or describe transitions and animations:

I see transitions/animations as neither styles nor behaviors, but as
effects (or you could also argue that an effect is the result of style and
behavior combined).

This idea of “presentational behavior” or “effects” is not new to CSS3.
CSS 2.1 has a taste of behavior-like styles using the :hover, :focus, and
:active pseudo-classes. A button that changes color when you hover
over it is displaying a behavior, but the behavior is a decorative and
usability enhancement, not essential to the content or functionality
of the page. CSS3 simply extends this further, giving you the ability to
control a wider range of dynamic stylistic effects with CSS. I think it
makes sense and is acceptable to have simple, decorative animations
controlled by a styling language; the more complex or behavioral ani-
mations should stay in the domain of scripting languages or Flash.

Yes, CSS animation can be abused. It shouldn’t be used for essential
behaviors, or for very complex animations that something like Flash
could handle more gracefully and efficiently, although a few people
will likely use it in these ways. That’s a shame, but it’s a fact of life with
just about any CSS technique. Evil web designers can always twist vir-
tuous CSS into work on their dastardly web sites.

Don’t worry about what evil web designers might do with CSS anima-
tions and transitions. Just worry about using them responsibly and
effectively yourself. After all, they’re not without their benefits.

B E N E F I TS O F C S S T R A N S I T I O N S A N D A N I M AT I O N S

One of the greatest advantages to you of CSS transitions and anima-
tions is that once you know the syntax, they can be a lot easier to
implement and later modify than equivalent effects in JavaScript or
Flash. (Just make sure you’re using CSS3 animations appropriately—
a very complex animation is going to be easier to create in Flash,
but you shouldn’t be using CSS3 animation for something complex

http://mondaybynoon.com/2009/05/04/covering-the-implication-and-basics-of-css-animation/#comment-9099
http://mondaybynoon.com/2009/05/04/covering-the-implication-and-basics-of-css-animation/#comment-9099

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES194

anyway.) CSS is also free, whereas using Flash for creating animations
is definitely not free.

In terms of benefits to your users, CSS transitions and animations
don’t rely on having JavaScript enabled or the Flash plugin installed;
the effects run off built-in browser functionality. Some users have
JavaScript disabled, and Flash does not and apparently never will
work on the iOS for iPhone, iPod Touch, and iPad. So although
browser support is poor for CSS animation now, in the future, when
support has increased, it may be the best way to show the widest pos-
sible audience your simple decorative effects.

CSS3 transitions and animations can also have performance benefits.
You don’t need any external JS or SWF files to run them, so there
are less HTTP requests. They also sometimes take less of the user’s
machine’s performing power to run, at least compared to a JavaScript
version. But this largely depends on the particular animation and
the alternate technology you’re comparing it to—Flash is often less
processor-intensive than the CSS3 equivalent. So again, be sure to use
transitions and animations only on relatively simple effects and to
test them well.

I’m not suggesting that CSS transitions and animations are a magic
bullet, or that they have no disadvantages. But they’re another great
tool that we can use carefully in appropriate situations. Let’s see how
to do that now.

FA D I N G I N T H E CO LO R U S I N G C S S T R A N S I T I O N S

The first option for fading in the background color of the current
heading is to use transitions. These are essentially the simplest type of
CSS animation. Transitions let you ease the change between two dif-
ferent styles of an element gradually and smoothly, instead of seeing
an immediate and abrupt difference in style when an element is hov-
ered, targeted, or has its state otherwise changed.

You apply a transition by telling the browser which property you
want to gradually change (using transition-property) and how long
the change should take in seconds (using transition-duration). You
can optionally add a delay to the start of the transition (transition-
delay) and vary the speed of change over the duration of the transi-
tion (transition-timing-function).

N OT E : See an inter-

esting compar

of ads created with

Flash versus with

CSS3 at www.sencha.

com/blog/2010/07/20/

html5-

versus-flash-ads.

N OT E : You can view

how each of the transi-

tion timing functions

works with the helpful

demo at http://css3.

bradshawenterprises.com.

www.sencha.com/blog/2010/07/20/html5-family-css3-adsversus-flash-ads
www.sencha.com/blog/2010/07/20/html5-family-css3-adsversus-flash-ads
www.sencha.com/blog/2010/07/20/html5-family-css3-adsversus-flash-ads
www.sencha.com/blog/2010/07/20/html5-family-css3-adsversus-flash-ads
http://css3.bradshawenterprises.com
http://css3.bradshawenterprises.com

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 195

All of these properties can also be combined into the shorthand
transition property. Add it, and the three browser-specific
equivalents, to the h2 rule:

h2 {
clear: left;
margin: 0 0 -.14em 0;
color: #414141;
font-family: Prelude, Helvetica, “Helvetica Neue”,

 Arial, sans-serif;
font-size: 2.17em;
font-weight: bold;
-moz-transition: background-color 1s ease-out;
-o-transition: background-color 1s ease-out;
-webkit-transition: background-color 1s ease-out;
transition: background-color 1s ease-out;

}

Here, we’ve told the browsers that any time the background-color
value of an h2 element changes, we want it to make that change
happen gradually over the course of one second. We’ve also specified
a transition-timing-function of ease-out so that the animation will
slow down slightly at the end.

Transitions are hard to illustrate in a static book, but Figure 5.17 shows
the gradual change in color when a heading is targeted. The transition
runs in reverse, from blue to transparent, when you use the Back but-
ton in your browser to remove the target from the heading.

F I G U R E 5 .1 7 Over the
one-second course of
the transition, the back-
ground of the head-
ing darkens from fully
transparent to blue.

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES196

WHAT CAN YOU TR ANSITION?

Not all properties can be transitioned. The W3C calls those that can

“animatable properties” and lists them at www.w3.org/TR/css3-

transitions/#animatable-properties-. That’s why I’ve used background-

color in the h2:target rule instead of the background shorthand

property; background-color can be transitioned and background

can’t. Or at least, it shouldn’t be able to be transitioned. Webkit and

Firefox don’t obey this, but Opera does, so the transition wouldn’t work

in Opera if we used background instead of background-color.

We could have put the transition on the h2:target rule instead of
the h2 rule. But if we did this, the transition would run only when a
heading became targeted; it wouldn’t run in reverse when the target
is removed, but would instead abruptly change back to transparent.
Also, currently, Opera supports transitions only when you place them
on the original state of the element, not on the changed state, so the
transition wouldn’t work in Opera if it were applied to the h2:target
rule. This seems to be incorrect behavior, but the in-progress W3C
spec doesn’t make this clear.

In addition to the background color transition, we can make the left
padding added to the highlighted headings transition too, to create
the appearance that the text is sliding to the right. You can do this by
simply writing the padding transition in the same transition prop-
erty, separated by a comma:

h2 {
 clear: left;

margin: 0 0 -.14em 0;
 color: #414141;

font-family: Prelude, Helvetica, “Helvetica Neue”,
 Arial, sans-serif;

 font-size: 2.17em;
 font-weight: bold;

-moz-transition: background-color 1s ease-out,
 padding-left .5s ease-out;
-o-transition: background-color 1s ease-out,
 padding-left .5s ease-out;
-webkit-transition: background-color 1s ease-out,
 padding-left .5s ease-out;
transition: background-color 1s ease-out,
 padding-left .5s ease-out;

}

N OT E : o try out this

transition yourself, view

the file target_4.html,

included in the exercise

files for this chapter, in

one of the transition-

he file contains all

the changes from the

chapter to this point.

www.w3.org/TR/css3-transitions/#animatable-properties
www.w3.org/TR/css3-transitions/#animatable-properties

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 197

THE LOWDOWN ON THE transition PROPERT Y

The transition property is part of the Transitions module found at www.w3.org/TR/css3-transitions.

It’s shorthand for the transition-property, transition-duration, transition-timing-

function, and transition-delay properties. It allows you to gradually change from one value

of a property to another upon an element’s state change.

The necessary pieces of a transition are transition-property (to specify the property of the ele-

ment you want to gradually change) and transition-duration (to specify over how long the

change should take—the default is zero if you leave it off). The other properties are optional.

Multiple properties of an element can be transitioned simultaneously; write each property’s transi-

tion in the same transition property, separated by commas. You can also use a value of all for

transition-property to specify that all of the element’s properties should transition.

Not all properties can be transitioned; see www.w3.org/TR/css3-transitions/#animatable-properties-

for a list of those that can. All of the transition-supporting browsers support transitioning most of

these properties; there are various exceptions that would take up too much space to list here.

See www.webdesignerdepot.com/2010/01/css-transitions-101 and http://thinkvitamin.com/design/

sexy-interactions-with-css-transitions for more transition syntax details and examples.

Other than fading in a background color change, you might want to use transition for:

Gradually changing between hover/focus and non-hover/focus states of buttons, tabs, or links

Making images appear to light up or brighten when hovered (by transitioning opacity)

Fading between images that are stacked on top of each other (such as a black and white version

that gets swapped with a colored version, or before and after images); see http://trentwalton.

com/2010/03/30/css3-transition-delay and http://css3.bradshawenterprises.com

Making image icons appear to gradually change color when hovered (by having transparent

areas within them through which a background color shows, and you then transition the back-

ground color); see www.ackernaut.com/tutorials/rocking-icons-with-css

Gradually making tooltips or informational boxes appear; see www.zurb.com/playground/

drop-in-modals

Creating the appearance that something is growing or shrinking (by transitioning its width,

height, or transform scale value); see www.zurb.com/playground/css3-polaroids and

www.marcofolio.net/css/animated_wicked_css3_3d_bar_chart.html

Making elements slide into view (by transitioning width, height, positioning, or transforms),

such as in an image gallery, accordion menu, or featured content slider; see www.nealgrosskopf.

com/tech/thread.php?pid=45, http://dev.opera.com/articles/view/css3-show-and-hide,

www.impressivewebs.com/animated-sprites-css3, and http://css3.bradshawenterprises.com

Creating a moving background image; see www.paulrhayes.com/2009-04/auto-scrolling-

parallax-effect-without-javascript

www.w3.org/TR/css3-transitions
www.w3.org/TR/css3-transitions/#animatable-properties
www.webdesignerdepot.com/2010/01/css-transitions-101
http://thinkvitamin.com/design/sexy-interactions-with-css-transitions
http://thinkvitamin.com/design/sexy-interactions-with-css-transitions
http://trentwalton.com/2010/03/30/css3-transition-delay
http://trentwalton.com/2010/03/30/css3-transition-delay
http://css3.bradshawenterprises.com
www.ackernaut.com/tutorials/rocking-icons-with-css
www.zurb.com/playground/css3-polaroids
www.marcofolio.net/css/animated_wicked_css3_3d_bar_chart.html
www.nealgrosskopf.com/tech/thread.php?pid=45
www.nealgrosskopf.com/tech/thread.php?pid=45
http://dev.opera.com/articles/view/css3-show-and-hide
www.impressivewebs.com/animated-sprites-css3
http://css3.bradshawenterprises.com
www.paulrhayes.com/2009-04/auto-scrolling-parallax-effect-without-javascript
www.paulrhayes.com/2009-04/auto-scrolling-parallax-effect-without-javascript
www.zurb.com/playground/drop-in-modals
www.zurb.com/playground/drop-in-modals

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES198

TA B L E 5 . 5 transition browser support

IE FIREFOX OPERA SAFARI CHROME

No Yes with -moz-, 4+ Yes with -o-, 10.5+ Yes with -webkit- Yes with -webkit-

Now the padding change from zero to ten pixels happens gradually
along with the gradual background color change (Figure 5.18). How
smoothly both of these transitions run depends a bit on your browser
(Webkit seems to be the smoothest and Firefox the most jerky), but all
the supporting browsers perform well on these simple effects.

FA D I N G O U T T H E CO LO R U S I N G C S S A N I M AT I O N S

I think briefly showing the background color on the current head-
ing and then fading it out would be even more effective and attrac-
tive than fading it in. It would be great if we could use transitions
to do this, as transitions have better browser support than anima-
tions (remember, only Webkit supports animation right now).
Unfortunately, transitions won’t work here, because we need each
heading to go from transparent (before it’s targeted) to blue (when
it’s targeted) to transparent again (a second after its targeted). That’s
three points of change, and transitions can only handle changing
between two values.

F I G U R E 5 .1 8 Over the
course of the transi-
tion, the background
of the heading darkens
and its text moves ten
pixels to the right.

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 199

CSS3 animations can change between as many values as you want.
They do this by letting you set up a series of keyframes, or points
in time within the animation, each with its own set of styles. The
browser then smoothly transitions between the keyframes in order,
gradually changing all the properties included in each one.

To create an animation in CSS, you first need to give it a name of your
choosing and define what it will do at each keyframe. You do this
using an @keyframes rule, but since only Webkit supports it right now,
we need to create two rules, one with the -webkit- browser prefix
and one without, for future compatibility. Add this new rule to CSS
in the page:

@-webkit-keyframes fade {
0% {background: hsla(203,78%,36%,.2);}
100% {background: none;}

}
@keyframes fade {

0% {background: hsla(203,78%,36%,.2);}
100% {background: none;}

}

This assigns a name of “fade” to our animation and specifies two key-
frames: one zero percent of the way through the duration (in other
words, at the very beginning) and one 100 percent of the way through
the duration (in other words, at the very end). We could also have
used the keywords from and to in place of 0% and 100% to denote the
starting and ending states.

Now that we’ve defined what we want our animation to do, we need
to apply it to an element. We want the animation to occur on targeted
h2 elements, so create a new h2:target rule and place it under the
existing one (soon you’ll see why we don’t want to add on to the exist-
ing h2:target rule):

h2:target{
 padding: 0;
 background: none;
 -webkit-animation-name: fade;
 -webkit-animation-duration: 2s;
 -webkit-animation-iteration-count: 1;
 -webkit-animation-timing-function: ease-in;
}

This tells the browser that the animation we want to run on this ele-
ment is named “fade” (using -webkit-animation-name). We want the
animation to take two seconds (the -webkit-animation-duration

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES200

value) and run only once (the -webkit-animation-iteration-count
value). We’ve also told the browser we want the animation to ease in,
making it slightly slower at the beginning than the end.

You can combine all these properties into the animation shorthand
property. Combine the -webkit- prefixed properties into the -web-
kit-animation property, and also add the non-prefixed animation
property to the h2:target rule:

h2:target{
padding: 0;
background: none;
-webkit-animation: fade 2s ease-in 1;
animation: fade 2s ease-in 1;

}

This second h2:target rule also removes the left padding and back-
ground color declared in the first one. If we didn’t remove the back-
ground, the animation would run once, and then once it was over, it
would display the static background color of the h2, popping back to
blue suddenly and staying blue. We need the heading to have no back-
ground so the animation can control the background entirely; once
the animation is over, we want the heading to remain transparent.

Removing the padding, on the other hand, is optional. I’ve chosen
to remove it because it doesn’t make sense to have the heading text
indented once the background color has faded away. To fix this, it’s
possible to animate the padding, having it decrease from ten pixels
to zero, just as we transitioned the padding in the opposite direction,
but I found the padding movement to be more distracting in this
case—it looked good with the fade-in, but I didn’t like it with the fade-
out. I opted for simplicity and decided to nix the padding altogether.

Save the page, and view it in Safari or Chrome. When you click on
a link, the background of the selected heading will immediately
become blue and then fade away smoothly. (This looks just like the
sequence in Figure 5.17, but in reverse.)

What would be even nicer is if the blue color stayed in place for a
moment, and then faded away. The animation-delay property allows
you to delay the beginning of the animation, but that’s not appropri-
ate in this case, because the heading has no background color to start
with. Before the animation starts, the user would not see blue, but
just a lack of any background at all.

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 201

GETTING MORE COMPLEX

In this example, we’re changing only the background color in each keyframe, but you can add as

many properties to a keyframe as you want. You simply write them between the curly brackets of the

keyframe like you would in any other CSS rule. For instance, if you wanted to change the font size as

well as the background color, you could do this:

@-webkit-keyframes fade {
 0% {
 background: hsla(203,78%,36%,.2);
 font-size: 100%;
 }
 100% {
 background: none;
 font-size: 120%;
 }
}

It’s also possible to assign more than one animation to a single element, so you could break each of

the above property changes out into its own animation:

@-webkit-keyframes fade {
0% {background: hsla(203,78%,36%,.2);}
100% {background: none;}

}
@-webkit-keyframes scaletext {

0% {font-size: 100%;}
100% {font-size: 120%;}

}

Then declare both animations on one element:

h2:target {
-webkit-animation-name: fade, scaletext;

 -webkit-animation-duration: 2s;
 -webkit-animation-iteration-count: 1;
 -webkit-animation-timing-function: ease-in;
}

Defining the animations separately takes more code, but may make it easier to keep track of what’s

happening at which points in complex animations, and it allows you to control the duration, itera-

tion, and other properties of each independently. Another advantage is that you can reuse each ani-

mation on other elements. For instance, you might want both the fade and text scaling to happen

on the h2 elements, but on h3 elements you may only want the text to scale. Since the animations

are separate, you can reuse the “textscale” animation instead of having to create a whole new ani-

mation for the h3 elements.

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES202

THE LOWDOWN ON THE animation PROPERT Y

The animation property is part of the Animations module found at

www.w3.org/TR/css3-animations. It’s shorthand for animation-name,

animation-duration, animation-timing-function, animation-

delay, animation-iteration-count, and animation-direction

(in that order).

Before using the above properties to apply an animation to an element,

you first name the animation and define what it does using an

@keyframes rule. The keyframes are multiple points in time through

the duration of the animation, indicated with percentages; the key-

words from and to correspond to 0% and 100%, respectively. Each key-

frame contains style rules that should apply at that point in time. The

browser gradually changes the styles from one keyframe to the next.

Other than fading out a background color, you might want to use

animation for:

Pulsing glow on buttons; see www.zurb.com/playground/

radioactive-buttons

Loader spinners; see http://24ways.org/2009/css-animations

Flash cards; see http://line25.com/articles/super-cool-css-flip-

effect-with-webkit-animation

Making elements roll into view; see www.zurb.com/playground/

sliding-vinyl

There are loads of more complex, movie-like effects people have cre-

ated with CSS animations, but I’ve tried to limit my examples here to

some of the more practical ones. Still, it’s fun to see what can be done;

Google “CSS3 animation” to get a taste.

TA B L E 5 . 6 animation browser support

IE FIREFOX OPERA SAFARI CHROME

No No No Yes with -webkit- Yes with -webkit-

Instead of using animation-delay to put off the start of the animation,
we can create a delay within the animation itself by adding another
keyframe to the animation that keeps the color the same shade of blue:

www.w3.org/TR/css3-animations
www.zurb.com/playground/radioactive-buttons
www.zurb.com/playground/radioactive-buttons
http://24ways.org/2009/css-animations
http://line25.com/articles/super-cool-css-flip-effect-with-webkit-animation
http://line25.com/articles/super-cool-css-flip-effect-with-webkit-animation
www.zurb.com/playground/sliding-vinyl
www.zurb.com/playground/sliding-vinyl

DYNAMICALLY HIGHLIGHTING PAGE SECTIONS 203

@-webkit-keyframes fade {
0% {background: hsla(203,78%,36%,.2);}
20% {background: hsla(203,78%,36%,.2);}
100% {background: none;}

}
@keyframes fade {

0% {background: hsla(203,78%,36%,.2);}
20% {background: hsla(203,78%,36%,.2);}
100% {background: none;}

}

Now the animation will start immediately by displaying a blue back-
ground, keep showing that background until 20 percent of the way
through the animation’s duration (.4 seconds), and then start fading
to transparent.

WO R K A R O U N D S FO R N O N - S U P P O RT I N G B R OWS E R S

The fade-out animation is now working great in Safari and Chrome,
but what about other browsers? We had to remove the background
color from the targeted h2 elements to make the animation work, so
now nothing changes in non-Webkit browsers when you click on one
of the table of contents links; they just remain transparent.

What we need is a way to let browsers that don’t support CSS anima-
tions see the first h2:target rule with the blue background color, and
browsers that do support CSS animations see the second h2:target
rule with the transparent background color. We can do this using the
Modernizr script described in Chapter 1.

This script is included in the exercise files you downloaded for this
chapter, so add a link to it in the head of the page:

<script src=”scripts/modernizr-1.6.min.js”></script>

This script adds classes to the html element of the page the corre-
spond to what the browser does and doesn’t support. So, for instance,
Modernizr will add a class of “cssanimations” to the html element in
Safari and Chrome, and all other browsers will get a class of “no-css-
animations”. This allows us to change the second h2:target selector
to apply only when the cssanimations class is present:

.cssanimations h2:target{
padding: 0;
background: none;
-webkit-animation: fade 2s ease-in 1;
animation: fade 2s ease-in 1;

}

N OT E : To try out this TT

animation yourself, view

the file tar

included in the exercise

files for this cha

The file contains all

the changes from the

chapter to this point.

N OT E : The version

of Modernizr included

with the exercise files

is 1.6, the latest ver-

sion at the time of this

writing. But there may

be a newer version

by the time you read

this, which you should

use instead. Check at

www.modernizr.com.

www.modernizr.com

CHAPTER 5: IMPROVING EFFICIENCY USING PSEUDO-CLASSES204

Save your page, and view it in both a Webkit-based browser and a
non-Webkit browser. In the former, you’ll see the fade-out animation
run when a heading is targeted. In the latter, you’ll see the fade-in
transition run when a heading is targeted. In browsers that don’t sup-
port either transitions or animations, but do support :target (such
as IE 9 and Firefox 3.6 and earlier), you’ll see the blue background
immediately appear on the targeted heading. And finally, in brows-
ers that support none of the above (such as IE 8 and earlier), you’ll see
nothing special happen when you click a table of contents link.

The table of contents links will still work, of course—they’ll still jump
people down the page, just as we’re all used to, so there’s no reason
users of less capable browsers will know anything is missing. If you
really must have a fade effect on the targeted heading in these brows-
ers, you have a couple workaround options:

Use an animated GIF. Yes, it’s a bit old-school, but it’s still a per-
fectly valid technique. Be aware that this works only on browsers
that support :target. All you have to do is add an animated GIF of
the color change as the background image in the h2:target rule.
You can read an entire tutorial about this method in “Star on :tar-
get” by Brian Suda at http://thinkvitamin.com/dev/stay-on-target.

Use a script. This will work regardless of whether or not the
browser supports :target (as long as the user has JavaScript
enabled, of course, and as long as the script was written to support
that user’s browser). Providing such a script is beyond the scope
of this book, but you may want to check out www.marcofolio.net/
css/css3_animations_and_their_jquery_equivalents.html and http://
weston.ruter.net/projects/jquery-css-transitions for some scripts
that can make all sorts of transitions and animations work. Also
consider Googling “javascript animation framework.” Finally, if
you’re just interested in a fade technique, Google “yellow fade
technique” and you’ll find a bunch of scripts—some standalone,
some related to a particular framework—that you can choose from.

In either of these options, remember to hide the extra CSS or scripts
from browsers that don’t need them, using either IE conditional com-
ments or Modernizr.

N OT E : he completed

page showing these

effects that you can

compare in di

browsers is named tar-

get_final.html in the exer-

cise files for this chapter.

www.marcofolio.net/css/css3_animations_and_their_jquery_equivalents.html
www.marcofolio.net/css/css3_animations_and_their_jquery_equivalents.html
http://thinkvitamin.com/dev/stay-on-target
http://weston.ruter.net/projects/jquery-css-transitions
http://weston.ruter.net/projects/jquery-css-transitions

6
Different Screen
Size, Different
Design
It’s no secret or surprise that the variety of ways people

browse the web is increasing. People may view your web pages

on widescreen TVs, desktop computers, netbooks, mobile

phones—even a refrigerator. While you can’t make a site that

looks identical on every single device at every screen size

and text size, you can make a site that adapts to the users’

settings so that it looks good and works well in the screen space

available. In this chapter, you’ll learn how to use CSS3 media

queries to tailor a web page’s design to various screen sizes on

the fly, making your web pages more dynamic, responsive,

and usable.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN206

WHAT YOU’LL LEARN

We’ll be restyling an entire page layout to work with different screen sizes and devices using these

pieces of CSS3:

Media queries to apply styles selectively based on the visitor’s device properties

Multi-columns to flow text into side-by-side columns

The Base Page
Figure 6.1 shows a layout for a fictional bakery. The layout is liquid
(also known as fluid) so that it adjusts to the width of the browser
window, making it work at a variety of screen sizes without generating
horizontal scrollbars or causing elements to overlap. But it certainly
looks better at some screen sizes than at others. On very wide or very
narrow windows, the design is still usable and looks OK, but it’s not as
attractive as it is within the 800- to 1200-pixel range (Figure 6.2).

F I G U R E 6 .1

The fictional Little Pea
Bakery home page, as
seen in a browser win-
dow that’s 1024 pixels
wide.

THE BASE PAGE 207

F I G U R E 6 . 2 The design looks OK, but not great, in very narrow and
very wide windows.

In Chapter 2 of my book Flexible Web Design: Creating Liquid and Elastic
Layouts with CSS, I show that flexible layouts don’t have to be plain or
ugly to work at a variety of screen sizes. You can build pages with flex-
ible images, reasonable text-line lengths, and creative use of space to
make sure the design works well at a large range of widths. But I don’t
deny that it’s impossible to create a design that looks every bit as good
condensed into 300 pixels as it does stretched out to 2000 pixels. I’ve
always advocated using min-width and max-width, as well as separate
styles for mobile devices, in order to get around this problem.

Since the writing of Flexible Web Design in 2008, however, a new tool
for creating layouts that work at any ridiculously large range of sizes
you want has gained good browser support: media queries.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN208

What are Media Queries?
Media queries let you customize styles based on the characteristics of
the user’s device or display, such as the viewport width, whether it’s in
portrait or landscape mode, or whether it shows color. This is different
from the media types, such as screen and print, that you can specify
for your style sheets in CSS 2.1. With media queries, you specify not
only the media type to which you want to apply a set of styles, but also
one or more characteristics of the user’s display. Here’s an example:

@media screen and (max-width: 600px) {
 body {
 font-size: 88%;
 }
 #content-main {
 float: none;
 width: 100%;
 }
}

The above media query starts with the @media rule, and then speci-
fies a media type (in this case, screen). Next there’s the word and,
followed by the characteristic we want to match against, called the
media feature. This particular media feature, max-width: 600px, tells
the browser that the styles for this media query, which are contained
within a set of curly brackets for the media query as a whole, should
apply only up to a maximum width of 600 pixels. If the viewport
width exceeds 600 pixels, the browser will ignore the styles inside
the media query.

This media query can be dropped right into your main style sheet,
keeping all your styles in one place for easy debugging and mainte-
nance, as well as saving an HTTP request. If you want, however, you
can apply media queries to separate style sheets on the link element
or @import rule:

@import url(narrow.css) only screen and (max-width:600px);

<link rel=”stylesheet” media=”only screen and
¬ (max-width:600px)” href=”narrow.css”>

Here, I’ve added the keyword only in front of the media type screen
to keep some older browsers that don’t understand media queries
from downloading and applying the style sheets universally. Most
non-supporting browsers will not use the sheet anyway, but this is

N OT E : All the available

media features are listed

and described fully at

www.w3.org/TRRR

mediaqueries

he ones you’ll probably

need most often are

min-width, max-width,

min-d ,

max-d ,

orientation (portrait

or landscape), color,

and resolution.

T I P : If you want to use

the media type all in

your media query, you

can make your CSS

shorter by leaving out

the media type entirely,

as well as the word

and, like so: @media

(max-width:600px .

www.w3.org/TR/css3-mediaqueries/#media1
www.w3.org/TR/css3-mediaqueries/#media1

CHANGING THE LAYOUT FOR LARGE SCREENS 209

extra insurance. The only keyword isn’t needed when you place the
@media rule directly in your main style sheet.

Whether embedded with other CSS or in separate sheets, media que-
ries are a powerful new tool in web design. We can use them to cus-
tomize and fine-tune our styles to each user’s device and settings with
more precision than we’ve ever been able to before. This can improve
not only the attractiveness of our web pages, but also their usability.
We can change text line lengths, leading, and font sizes to make sure
the text remains readable at different widths. We can rearrange col-
umns and resize or remove images on small screens to make better use
of the space and let users get right to the content they want. We can
make links larger on touch-screen mobile devices to make them easier
for people to activate with their fingers. And we can do all this without
having to involve complicated scripting for browser sniffing, feature
detection, or style-sheet switching. You just continue to use the CSS
that you already know to write different styles for different scenarios.

Let’s use media queries now on our example page to customize the
design to large screens, small screens, and mobile devices.

Changing the Layout
for Large Screens
We’ll start with the styles for large screens. Download the exercise
files for this chapter at www.stunningcss3.com, and open media-
queries_start.html in your code editor. Its CSS is contained in a style
element in the head of the page.

The design of this example page starts looking a bit stretched out at
around 1200 pixels wide, so let’s add a media query that will apply
only when the window is 1200 or more pixels wide. Add the following
CSS after all the existing styles in the style element in the head:

@media screen and (min-width: 1200px) {
}

This media query has to be at the end of the styles so that it will over-
ride the earlier styles, using the cascade of CSS. It tells the browser
that we want the styles within this media query to apply to screen
media types, but only if the user’s viewport width is 1200 pixels at a

www.stunningcss3.com

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN210

minimum. Of course, right now there are no styles in the media query,
just empty brackets waiting to be filled. Since we have so much extra
space in viewports over 1200 pixels wide, how about we fill those
brackets with styles to change the layout from two columns to three?

To do this, we’ll change the positioning of the navigation div, as well
as the widths and margins of the two content divs. Here are the cur-
rent styles of these three divs, outside the media query:

#nav-main {
 float: right;

margin: 40px 0 0 0;
}
#content-main {
 overflow: hidden;
 float: left;
 width: 70%;
 margin-bottom: 40px;
}
#content-secondary {
 float: right;
 width: 25%;
 margin-bottom: 40px;
}

Modify these styles for viewports over 1200 pixels wide by adding new
rules within the media query you just created:

@media screen and (min-width: 1200px) {
 #nav-main {
 position: fixed;
 top: 136px;
 width: 13%;
 margin: 0;
 }
 #content-main {
 width: 58%;
 margin-left: 18%;
 }

#content-secondary { width: 20%; }
}

This positions the navigation div under the logo, creating a third col-
umn. To make room for it, it was necessary to decrease the width of
the content-secondary div from 25 percent to 20 percent, decrease
the width of the content-main div from 70 percent to 58 percent,
and add a left margin to content-main.

N OT E : Opera 10.6

has a strange bug that

makes the navi

div disappear w

you first expand the

window past 1200 pixels.

When you hover over

the area where it should

be, it shows up. There’s

no workaround for this

right now; hopefully the

Opera team will fix this

bug soon.

CHANGING THE LAYOUT FOR LARGE SCREENS 211

Let’s also change the widths of the about and credits divs in the footer
to match the widths of the columns above them. Add their IDs onto
the #content-main and #content-secondary rules in the media query:

#content-main, #about {
 width: 58%;
 margin-left: 18%;
}
#content-secondary, #credits { width: 20%; }

Now all the page elements are better positioned to work well in the
width available (Figure 6.3). Save your page, and view it in an up-to-
date browser. Resize your window to see how the layout automatically
changes when you get past 1200 pixels wide.

F I G U R E 6 . 3 The elements of the page now make better use of the space in wide windows.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN212

THE LOWDOWN ON MEDIA QUERIES

Media queries are described in a module of the same name, found at www.w3.org/TR/css3-

mediaqueries. They let you customize styles based not only on media type, such as screen

and print, but also on characteristics of the user’s display, such as viewport width. These char-

acteristics, called media features, are listed at www.w3.org/TR/css3-mediaqueries/#media1; not all

browsers that support media queries support all of them.

A media query can be written within a style sheet, using the @media rule, followed by the media

type and one or more media features. Media queries can also be written onto link elements and

@import rules, omitting the @media rule.

You can include more than one media feature in a single media query, such as @media screen

and (min-width:320px) and (max-width:480px). You can also include more than one media

query in the same @media rule, separated by commas, such as @media screen and (color),

projection and (color), similar to a grouped selector.

You can write the word not at the start of a media query to apply its styles only when the media

query is not true, such as @media not print and (max-width:600px).

Other than changing layout at different screen sizes, you might want to use media queries for:

Adjusting text size and leading to keep text more readable at different line lengths; see

http://forabeautifulweb.com/blog/about/proportional_leading_with_css3_media_queries

Increasing text size of buttons, tabs, and links on mobile devices to make these elements easier

to activate with your finger on touch screens

Decreasing body-text size on small mobile screens since the user is effectively zoomed in, making

the text seem larger than on desktop screens

Revealing in-page links to jump to content down the page on small mobile screens

Swapping in higher resolution images on high-resolution devices, such as the iPhone 4;

see http://dryan.com/articles/posts/2010/6/25/hi-res-mobile-css-iphone-4 as well as the example

later in this chapter

Swapping in differently sized images for different viewport sizes

Applying different print styles for different sizes of paper

TA B L E 6 .1 Media queries browser support

IE FIREFOX OPERA SAFARI CHROME

Partial, 9+ Partial, 3.5+ Partial Partial Partial

I’ve listed all of these browsers as having partial support because they don’t support all the available media
features. The details for each browser are too long and, well, detailed to cover here; however, all listed
browsers support most of the media features, including the ones you are most likely to use regularly.

www.w3.org/TR/css3-mediaqueries
www.w3.org/TR/css3-mediaqueries
www.w3.org/TR/css3-mediaqueries/#media1
http://forabeautifulweb.com/blog/about/proportional_leading_with_css3_media_queries
http://dryan.com/articles/posts/2010/6/25/hi-res-mobile-css-iphone-4

CHANGING THE LAYOUT FOR LARGE SCREENS 213

From Horizontal Nav Bar to Vertical Menu

Although everything is now in the place we want it, some of the page
elements could use further cosmetic updates. For instance, the li ele-
ments in the nav-main div are floated and have left margins in order
to align them all horizontally and space them out from each other,
but this keeps them from stacking on top of each other, only one to a
line, as we want in a vertical menu. They also have slightly rounded
top corners, which looks good when they’re horizontal, but not when
they’re sitting right on top of each other. We no longer need these
styles now that we’re styling the links as a vertical menu, so we’ll over-
ride them with new styles within the media query:

#nav-main li {
 float: none;
 margin: 0;
}
#nav-main a {
 -moz-border-radius: 0;
 -webkit-border-radius: 0;
 border-radius: 0;
}

Now each link is on its own line and takes up the full width of the
menu (Figure 6.4).

Next, let’s apply some styling to the menu as a whole to make it look
more similar to the email newsletter box on the other side of the
page, which has a semitransparent background, slightly rounded cor-
ners, and a soft drop shadow:

#nav-main {
 position: fixed;
 top: 136px;
 width: 13%;
 margin: 0;

-moz-box-shadow: 0 0 8px hsla(0,0%,0%,.1);
-webkit-box-shadow: 0 0 8px hsla(0,0%,0%,.1);
box-shadow: 0 0 8px hsla(0,0%,0%,.1);

 -moz-border-radius: 3px;
 -webkit-border-radius: 3px;
 border-radius: 3px;
 background: hsla(0,0%,100%,.3);
 text-align: right;
}

F I G U R E 6 . 4 Each link
now takes up the full
width of the menu.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN214

Since the menu has its own background color now, tone down the
semitransparent gradients on the links within it, so that the two col-
ors layered over each other don’t get too opaque:

#nav-main a {
-moz-border-radius: 0;
-webkit-border-radius: 0;
border-radius: 0;
background: -moz-linear-gradient(hsla(0,0%,100%,.3),
¬ hsla(0,0%,100%,0) 15px);
background: -webkit-gradient(linear, 0 0, 0 15,
¬ from(hsla(0,0%,100%,.3)), to(hsla(0,0%,100%,0)));

}
#nav-main a:hover {

background: -moz-linear-gradient(hsla(0,0%,100%,.6),
¬ hsla(0,0%,100%,.2) 15px);
background: -webkit-gradient(linear, 0 0, 0 15,
¬ from(hsla(0,0%,100%,.6)), to(hsla(0,0%,100%,.2)));

}

These changes complete the navigation’s transformation from hori-
zontal bar to vertical menu (Figure 6.5).

Multi-column Text

One of the main complaints people have with layouts that adjust to
viewport width is that the length of lines of text can become either
too short or too long to be read comfortably or look attractive. Some
of this fear of “non-standard” line lengths is based on assumption
and myth. In reality, there is no magic line length that is ideal for
everyone; a person’s age, reading level, native language, disability, and
other factors all influence which line length he finds easiest to read.

However, it’s true that line lengths on the extreme ends of the range
don’t work well for the majority of readers and don’t always look very
attractive. One way that we can now control line lengths is with the
new multi-column properties in CSS3. These properties allow you
to flow the content of a single HTML element into multiple columns,
similar to a newspaper layout.

You create the columns using either the column-count or column-
width properties; in the latter case, the browser will decide how many
columns to make based on the available space. (You can also use both
properties together, though you may get unexpected results; see “The
lowdown on multi-columns” for more information.)

F I G U R E 6 . 5 The menu
in the left column
has been restyled to
resemble the newsletter
subscription box in the
right column.

N OT E : You can learn

more a

Chapter 1 of

Web Design, which you

can download for free at

www.flexiblewebbook.

com/bonus.html.

www.flexiblewebbook.com/bonus.html
www.flexiblewebbook.com/bonus.html

CHANGING THE LAYOUT FOR LARGE SCREENS 215

Let’s break the introductory paragraph into two columns in both the
regular layout and the wide layout. Find the existing h1 + p rule in
the styles outside of the media query; it should be on line 102, about
a third of the way down the style element. Add the column-count
property, plus the three browser-specific versions, to the rule:

h1 + p {
 -moz-column-count: 2;
 -o-column-count: 2;
 -webkit-column-count: 2;
 column-count: 2;
 color: #7F4627;

text-shadow: -1px -1px 0 hsla(0,0%,100%,.6);
 font-size: 120%;
}

Right now, no browser supports the non-prefixed column-count
property, and Opera doesn’t do anything with the -o-column-count
property since it doesn’t yet support multi-columns, but it’s wise to
include both for future compatibility.

The property tells supporting Mozilla- and Webkit-based browsers
that you want to break the paragraph into two column-boxes. These
column boxes are not actual elements in the document tree of the
HTML, rather just virtual boxes that the browser creates to flow the
content of the paragraph into. The paragraph is now what the W3C
calls a multicol element—it’s a container for a multiple-column layout.

You can control the space between the columns using the column-gap
property. Set it to 1.5 ems in the h1 + p rule:

h1 + p {
 -moz-column-count: 2;
 -moz-column-gap: 1.5em;
 -o-column-count: 2;
 -o-column-gap: 1.5em;
 -webkit-column-count: 2;
 -webkit-column-gap: 1.5em;
 column-count: 2;
 column-gap: 1.5em;
 color: #7F4627;

text-shadow: -1px -1px 0 hsla(0,0%,100%,.6);
 font-size: 120%;
}

If you don’t set a column-gap value, each individual browser decides
how much space to add by default, so it’s best to standardize it by

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN216

explicitly setting the value you want. Here, we’ve used a value in ems
so that the gap will grow larger as the text grows larger, keeping the
text more readable.

Now the introductory paragraph is broken into two columns in both
the regular layout and the wide layout created with the media query
(Figure 6.6). This completes all the styling for the wide version of the
bakery page (Figure 6.7).

F I G U R E 6 . 6 The text
of the introductory
paragraph flows into
two columns in Firefox,
Safari, and Chrome.

F I G U R E 6 .7

The completed design
for wide viewports

N OT E : he page with

all the changes to this

point is named media-

queries_1.html in the

exercise files for this

chapter.

CHANGING THE LAYOUT FOR LARGE SCREENS 217

P R O B L E M S W I T H M U LT I - CO LU M N S

Although CSS3 multi-columns work well for the introductory paragraph
in our bakery page, there are a number of problems with them that
limit their usefulness, which you should be aware of before you use the
feature. Some of these problems are technical in nature, so as the W3C
refines the specification and browsers fix bugs and improve support,
they should disappear or at least lessen. These problems include:

Balancing column heights. If there’s not enough content to fill
each column equally, the browser has to decide which column gets
the extra height. Different browsers choose differently, with some-
times unexpected results.

Flowing margin, padding, and borders across columns. Webkit-
based browsers allow margin, padding, and borders to be split
across columns, creating a very strange appearance.

Breaking content across columns. Being able to control where
content breaks across columns is important, as you want to be able
to ensure that a heading stays with its associated text, for instance.
The column-break properties control this, but no browser sup-
ports them now.

Overflowing columns or content. Browsers are currently incon-
sistent about how to handle overflow when not all of the content
or columns can fit in the container (the multicol element); it may
overflow to the right or below, or just be truncated. An individual
piece of content that is too large to fit in a column box, such as an
image that is wider than the column width, is supposed to be cut
off in the middle of the column gap, but Firefox lets it overflow
and Webkit cuts it off at the edge of the column, not within the
gutter as the spec dictates.

Floating content within columns. Floats within a multicol ele-
ment are supposed to be positioned relative to the column box in
which they appear. Firefox does this; Webkit, strangely, puts the
float outside of the multicol element entirely.

Pagination when printed. When a multicol element has to break
across two or more pages when printed, the columns are not sup-
posed to break across the pages. The content should run through the
columns on the first page, then run through the columns on the sec-
ond page, and so on. Older versions of Webkit-based browsers didn’t
follow this; current versions simply make the content go back to a
single column when printed, avoiding the issue entirely.

N OT E : or a demo of

the first two

in this list, see http://

zomigi.com/blog/deal-

breaker-problems-with-

css3-multi-columns.

http://zomigi.com/blog/dealbreaker-problems-withcss3-multi-columns
http://zomigi.com/blog/dealbreaker-problems-withcss3-multi-columns
http://zomigi.com/blog/dealbreaker-problems-withcss3-multi-columns
http://zomigi.com/blog/dealbreaker-problems-withcss3-multi-columns

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN218

But some problems with multi-columns are more inherent to the idea
of columns on the web to begin with. Having to scroll down to read
a column and then back up to read the next column, over and over
again, is just plain annoying and tiresome. This isn’t a technical prob-
lem—it’s a usability problem with breaking up content that’s taller
than a constrained screen. Treating the web like print often doesn’t
work well. For more on the usability and design problems inherent to
CSS3 multi-columns, see “Multicolumn layout considered harmful”
by Roger Johanssen (www.456bereastreet.com/archive/200509/css3_
multicolumn_layout_considered_harmful), “More on multi-column
layouts” by Richard Rutter (www.clagnut.com/blog/1590), and “CSS3
Multi-Column Thriller” by Andy Clarke (www.stuffandnonsense.
co.uk/archives/css3_multi-column_thriller.html).

Because of all of these problems, I strongly recommend only using
multiple columns in a limited manner. I think they’re fine for a cou-
ple paragraphs or a list, for instance. I don’t think they work very well
for long blocks of body copy or content that is complex, with several
paragraphs, types of elements, or images within it. Just keep this in
mind, and use multi-columns wisely.

WO R K A R O U N D S FO R N O N - S U P P O RT I N G B R OWS E R S

Multi-columns are a quintessential progressive enhancement tech-
nique, since browsers that don’t support the multi-column properties
simply see the text as it started out—in one column.

If you must provide a workaround for non-supporting browsers,
there are several scripts that can flow content into multiple columns.
The CSS3 Multi Column script by Cédric Savarese (www.csscripting.
com/css-multi-column) is a nice one because it reads the multi-
column properties already in your CSS and makes them work in non-
supporting browsers. You may also want to check out:

Columnizer jQuery plugin, by Adam Wulf
(http://welcome.totheinter.net/columnizer-jquery-plugin)

MooColumns MooTools class, by Jason J. Jaeger
(http://greengeckodesign.com/moocolumns)

Multi-column script, by Randy Simons
(http://randysimons.nl/125,english/129,multi-column-text)

Column script, by Michael van Ouwerkerk
(http://13thparallel.com/archive/column-script)

www.456bereastreet.com/archive/200509/css3_multicolumn_layout_considered_harmful
www.456bereastreet.com/archive/200509/css3_multicolumn_layout_considered_harmful
www.clagnut.com/blog/1590
www.stuffandnonsense.co.uk/archives/css3_multi-column_thriller.html
www.stuffandnonsense.co.uk/archives/css3_multi-column_thriller.html
www.csscripting.com/css-multi-column
www.csscripting.com/css-multi-column
http://welcome.totheinter.net/columnizer-jquery-plugin
http://greengeckodesign.com/moocolumns
http://randysimons.nl/125,english/129,multi-column-text
http://13thparallel.com/archive/column-script

CHANGING THE LAYOUT FOR LARGE SCREENS 219

THE LOWDOWN ON MULTI-COLUMNS

Multi-columns are described in the Multi-column Layout module found at

www.w3.org/TR/css3-multicol. They’re created using either the column-

count or column-width properties (or both). You can set both using the

columns shorthand property, but Firefox doesn’t yet support it.

The column-width property lets the browser decide how many

columns to make based on the space available. The value you set in

column-width is actually more like a minimum width; for instance, if

you set column-width to 100 pixels inside a 250-pixel-wide container,

and you set the column-gap to zero, the browser will make two col-

umns that are both 125 pixels wide.

The column-count property allows you to set the number of columns

explicitly, with their widths determined by the space available. If you set

both column-count and column-width, the column-count value acts

as a maximum number of columns. For instance, in the same 250-pixel-

wide container, if you set column-width to 100 pixels and column-

count to 3, the browser will not make three columns but only two.

You can use the column-gap property to create spaces between the col-

umns, and the column-rule property to create a vertical line within each

gap as a visual separator. The column-span property allows elements to

span across multiple columns, but is not yet supported by any browser.

The break-before, break-after, and break-inside properties con-

trol where content is broken across columns, but they are not yet sup-

ported by any browser.

Other than breaking short pieces of body text into multiple columns,

as we’ve done in this chapter, I think the only safe use for multi-columns

currently is to break a single list of short items into multiple columns;

see http://trentwalton.com/2010/07/19/css3-multi-column-layout-

column-count for an example.

TA B L E 6 . 2 Multi-columns browser support

IE FIREFOX OPERA SAFARI CHROME

No Partial No Partial Partial

www.w3.org/TR/css3-multicol
http://trentwalton.com/2010/07/19/css3-multi-column-layout-column-count
http://trentwalton.com/2010/07/19/css3-multi-column-layout-column-count

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN220

Changing the Layout
for Small Screens
With the wide-screen variation completed, let’s turn our attention
now to smaller screens. First off, we’ll add a second media query right
below the first one you added, targeting viewports that are narrower
than 760 pixels wide:

@media screen and (max-width: 760px) {
}

This tells the browser that we want the styles that we’ll add within
this media query to apply to screen media types in viewports up to a
maximum width of 760 pixels. Why have I chosen 760 pixels? Because
this width prevents these styles from being applied to either maxi-
mized windows on 800 by 600 resolution desktop monitors or to
iPads, which have a screen size of 768 by 1024 pixels. In both of these
cases, I want the normal styles to apply, as I think the layout looks fine
at these sizes. But under 760, the layout starts looking squished, with
an increasing possibility of content overflowing its containers.

Once again, let’s start by changing the styles on the nav bar to better
fit the available space. When the window is narrowed, the entire nav
bar drops onto a line below the logo, which is fine, but it stays right-
aligned, which doesn’t look as good when it doesn’t have the logo to
its left. So let’s change the styles on the nav bar to left-align it when it’s
on a line below the logo:

@media screen and (max-width: 760px) {
 #nav-main {
 clear: left;
 float: left;
 }

#nav-main li { margin: 0 .5em 0 0; }
}

You can see the difference that these styles make in Figure 6.8. It’s a
small change, but it’s a nice little bit of polish that only took a small bit
of CSS to accomplish.

CHANGING THE LAYOUT FOR SMALL SCREENS 221

F I G U R E 6 . 8 The nav bar can’t fit beside the logo in narrow windows, so we switched it from the right side to
the left using a media query.

Next, let’s get rid of the two columns in the introductory paragraph—
they’re awkwardly narrow when the window is under 760 pixels
(Figure 6.9). Change the column count to 1 in a new h1 + p rule in
the second media query:

h1 + p {
 -moz-column-count: 1;
 -o-column-count: 1;
 -webkit-column-count: 1;
 column-count: 1;
}

F I G U R E 6 .9

The columns can fit
only two or three words
per line in narrow
windows.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN222

Now the line lengths are more reasonable in the introductory paragraph
(Figure 6.10), but the three side-by-side columns underneath that para-
graph are still extremely narrow (Figure 6.11). Let’s fix them next.

F I G U R E 6 .1 0 Reducing
the column-count back
to 1 in narrow windows
makes the introductory
text better-looking and
easier to read.

F I G U R E 6 .1 1

The featured product
boxes are very narrow,
having to sit side by side
in a small viewport.

CHANGING THE LAYOUT FOR SMALL SCREENS 223

Right now, each featured product box is a div that’s floated to the
left. Removing the floats will make them stack on top of each other
instead, filling the whole width of the main content div. But when
they’re stacked on top of each other, the illustration that goes with
each feature box doesn’t look as nice positioned at the top of the box—
it makes more sense to put the illustration on the left side of the box.
So add this new rule to the media query:

.feature {
float: none;
width: auto;
margin: 0 0 1.6em 0;
padding: 0 0 0 140px;
background-position: top left;

}

This rule stops the feature boxes from floating and removes their per-
centage widths. It also removes the top padding from each box and
replaces it with left padding, providing room for each illustration—a
background image—to sit in on the left side of the box.

N OT E : The three illus-

trations are part of the

free Yummy icon set

designed by Icon den

html).

F I G U R E 6 .1 2 Having
the featured product
boxes stack, with
their icons on the left
instead of the top,
looks better in the lim-
ited space of narrow
windows.

www.iconeden.com/icon/yummy-free-icons.html
www.iconeden.com/icon/yummy-free-icons.html
www.iconeden.com/icon/yummy-free-icons.html

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN224

There’s only one more change to make to the narrow version of the
page. The right column is now fairly thin, increasing the chance that
long words will overflow it. The headings in the column are in the
greatest danger, since their all-caps style makes them take up so much
room. We can lessen their chance of overflowing by decreasing their
text size and letter spacing:

h3 {
 font-size: 100%;
 letter-spacing: 0;
}

You can see the change that this rule produces in Figure 6.13. Again,
it’s a subtle change, but it’s a nice little piece of insurance to keep the
text contained and thus more readable.

This completes the changes we’re going to make for the narrow ver-
sion of the bakery page (Figure 6.14). Save your page and view it in an
up-to-date browser. Resize the window to see the design change at
very narrow and very wide widths.

F I G U R E 6 .1 3 Reducing
the size and spacing
of the headings in the
sidebar decreases the
chance that text will
overflow when the side-
bar gets really narrow.

N OT E : he page with

all the changes to this

point is named media-

queries_2.html in the

exercise files for this

chapter.

CHANGING THE LAYOUT FOR SMALL SCREENS 225

F I G U R E 6 .1 4 The completed design for
narrow viewports

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN226

Changing the Layout
for Mobile Devices
If you got very zealous in resizing your window to test the narrow-
screen styles, you may have noticed that—even with the changes we
made—the layout doesn’t look very good at extremely narrow widths
like the ones you find on mobile devices. Well, there’s only one thing
to be done: add another media query!

Media queries are a great way to customize the styles on mobile
devices quickly and easily. But please be aware that I’m not suggesting
they’re the only way you should deal with mobile sites; you may need
to add server-side scripting or other techniques to change the content
and functionality on the mobile version of your site. While media
queries may be enough customization for the mobile version of a
small business’s brochure site (such as our example bakery site), a big,
complicated news site probably needs to use additional techniques
to significantly change the content, navigation, and other functional-
ity on their mobile site. Plus, hiding or swapping in different content
extensively using media queries is not efficient—the browser may still
download the content it doesn’t need (see www.quirksmode.org/blog/
archives/2010/08/combining_media.html for more on this). So don’t
think media queries are necessarily going to solve all your mobile
web design problems—use media queries as one of your mobile opti-
mization tools.

When adding a mobile media query, what size should you target?
Mobile phone screen sizes vary dramatically, but many of the most
popular phones—including iPhones and many Android phones—have
screens that are 320 by 480 pixels wide. Screens on other phones are
rarely larger than this. But the design of our bakery page starts to
break down around 550 pixels. So let’s use 550 as the width to target
with our third media query, which will work in 320 by 480 mobile
phones as well as mobile phones with slightly larger screens.

Before we add this media query, however, let’s talk a bit about
device width.

T I P : If you want to

target a particular

device, you can

up its screen size at

http://cartoonized.net/

cell

resolution.php.

www.quirksmode.org/blog/archives/2010/08/combining_media.html
www.quirksmode.org/blog/archives/2010/08/combining_media.html
http://cartoonized.net/cellphone-screenresolution.php
http://cartoonized.net/cellphone-screenresolution.php
http://cartoonized.net/cellphone-screenresolution.php

CHANGING THE LAYOUT FOR MOBILE DEVICES 227

What is Device Width?

One of the media features you can use in media queries is called
device-width, along with min-device-width and max-device-width.
Device width refers to the number of pixels available across the actual
device or display, rather than within the viewport. This means that
a desktop computer with its screen resolution set to 1280 by 800 has
a device width of 1280 pixels. When you target device-width in your
media queries, browsers ignore the size of the user’s browser window
and instead pay attention to the user’s screen resolution.

Mobile phones generally don’t use windows—the “window” is always
the same size as the entire screen, so the idea of a viewport, as
we traditionally think of it, doesn’t really fit. Device width seems
more relevant.

But there’s a little catch. Apple doesn’t always make its products’
device-width equal to the number of pixels available across the
width of the screen, as most other phones do. iPhones before version
4 and iPod Touches, though they both have screen sizes of 320 by 480
pixels, always have Mobile Safari report that the device width is 320
pixels, even when the user is viewing the device in landscape mode
and is seeing 480 pixels of width. iPads work the same way—the device
width is always reported as 768 pixels, despite the orientation of the
iPad. This is even more confusing in the iPhone 4, which has a high-
resolution screen of 640 by 960 pixels, but reports its device width
as 320 pixels.

This doesn’t mean you can’t or shouldn’t use device-width, but it
does mean that you may find it more intuitive to use min-width and
max-width instead of min-device-width and max-device-width. They
both work the same way on mobile phones; the main difference is
whether or not each applies on non-mobile devices too. For instance,
a media query targeting a max-width of 550 pixels will apply to both
mobile devices with screens under 551 pixels and desktop browser
windows narrower than 551 pixels. But a media query targeting a
max-device-width of 550 pixels has almost no chance of applying to
anything other than mobile devices—I don’t think there are many
desktop computers with screen resolutions under 551 pixels wide! So
neither one is inherently better or worse than the other—they’re just
different options that you can choose between depending on what
you’re trying to target.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN228

The Third Media Query

Let’s add the third media query now to apply to windows up to 550
pixels wide:

@media screen and (max-width: 550px) {
}

Make sure you add this beneath the second media query (the one
targeting a maximum width of 760 pixels). That’s because the second
media query applies to mobile devices as well—a mobile device with a
480-pixel-wide screen is under the maximum width of 760 pixels. If
you put the 550-pixel media query before the 760-pixel media query,
the 760 one would override the styles in the 550 one. This is just how
the CSS cascade works—rules that come later override rules of the
same specificity that were declared earlier.

USEFUL MEDIA QUERIES FOR MOBILE

We’re using max-width: 550px for our mobile media query, but there are all sorts of alternate

media queries you could use instead, depending on which devices or user settings you’re trying to

target. Here are several examples to give you an idea of what’s possible, so you can craft your own

to suit your project’s needs:

(min-device-width: 320px) and (max-device-width: 480px) works in mobile phones with 320

by 480 resolution (like iPhones and Android devices) in both portrait and landscape orientations.

(max-width: 320px) works in 320 by 480 mobile phones in portrait only.

(min-width: 321px) works in 320 by 480 mobile phones in landscape only.

(min-device-width: 768px) and (max-device-width: 1024px) works in iPads in both

orientations.

(min-device-width: 481px) and (max-device-width: 1024px) and (orientation:

landscape) works in iPads in landscape only. It also works in desktop browsers that are wider

than they are tall when on screens with a resolution width of 1024 or lower.

(min-device-width: 481px) and (max-device-width: 1024px) and (orientation:

portrait) works in iPads in portrait only. It also works in desktop browsers that are taller than

they are wide when on screens with a resolution width of 1024 or lower.

If you didn’t want the two media queries to overlap, you could add a
minimum width onto the 760-pixel media query, such as:

@media screen and (min-width: 551px) and (max-width: 760px)

CHANGING THE LAYOUT FOR MOBILE DEVICES 229

This media query would apply only to windows between 551–760 pixels,
not to mobile devices under 551 pixels wide. This might be good or bad,
depending on your particular project. In our case, it would mean repeat-
ing a lot of the rules from the 760-pixel media query in the 550-pixel one,
since we want a lot of the styles to be the same in both. For instance, we
want the intro paragraph to have only one column of text in both the 550-
pixel layout and the 760-pixel layout. When these two media queries over-
lap, we only have to declare the one column in the 760-pixel media query,
and then it will also apply to windows under 550 pixels.

In our example page, overlapping the media queries lets us reuse
several styles and keep our CSS more streamlined. On other sites,
however, you may want very different styles at each width, so it may
make more sense to not let your media queries overlap. Keeping
them separate may also be less confusing for you, as you don’t have
to keep track of the cascade. Again, there’s no right or wrong answer
here—it all depends on what you’re trying to accomplish.

In this case, we’re going to leave the 760-pixel media query as it is,
and make sure the 550-pixel media query comes below it so that both
apply to windows under 551 pixels wide.

R E M OV I N G F LOATS

The primary change we need to make to the mobile design of the site
is getting rid of the floats so that the entire page is one column. Most
mobile web pages are a single column—there’s simply not enough
room for columns to sit side by side on those little screens.

Add the following rules to the third media query:

@media screen and (max-width: 550px) {
#content-main, #content-secondary {

 float: none;
 width: 100%;
 }

#about, #credits {
 float: none;
 width: 100%;
 }

#credits { margin-top: 1.6em; }
}

Now the sidebar column displays under the main content column,
and the “Credits” block in the footer displays under the “About” block
(Figure 6.15). The top margin added to the credits div keeps the
blocks in the footer spaced out from each other.

F I G U R E 6 .1 5 The layout
is all one column now
in extremely narrow
mobile viewports.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN230

R E D U C I N G H E I G H TS

Another useful change to make to many mobile pages is to reduce the
vertical space that elements take up, reducing the amount that users
have to scroll down the long single column.

The text in the tagline and introductory paragraph doesn’t need to be
quite so large when viewed up close on a mobile device, so you can
reduce both font sizes by creating new h1 and h1 + p rules:

h1 { font-size: 225%; }
h1 + p { font-size: 100%; }

Figure 6.16 shows the result of these CSS additions.

F I G U R E 6 .1 6 Making
the introductory text
smaller reduces the
need for so much
scrolling in tiny mobile
screens.

CHANGING THE LAYOUT FOR MOBILE DEVICES 231

Working our way further down the page, you’ll see that the prod-
uct icons look rather large in the context of such a narrow window,
and the text beside them could use more room. Luckily, the Yummy
icon set I’ve used for the illustrations came in three sizes: 128 pixels,
64 pixels, and 48 pixels. We can switch the background images to the
64-pixel size in our mobile media query:

.feature { padding-left: 70px; }
#feature-candy { background-image:
 url(images/icon_candy_64-trans.png); }
#feature-pastry { background-image:
 url(images/icon_pastry_64-trans.png); }
#feature-dessert { background-image:
 url(images/icon_dessert_64-trans.png); }

Now the featured products area takes up less overall height and looks
more balanced (Figure 6.17).

Next, check out the email newsletter subscription block. The text
field within it takes up its full width, but there’s now room to display
the label text and button on the same line as the text field, at least on
larger mobile screens. Add these rules to the media query:

#form-newsletter * { display: inline; }
#form-newsletter input[type=text] { width: auto; }

T I P : Instead of swap-

ping in the di

images, you could use

background-size to

resize the icons. his

has the disadvantage of

making the icons a little

less sharp-edged, but

the advantage of having

only one set of images

to load.

F I G U R E 6 .1 7 Reducing
the size of the icons in
the featured products
area makes them look
more balanced against
the blocks of text in nar-
row widths.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN232

These changes tighten up the newsletter block’s appearance
(Figure 6.18). In portrait-oriented mobile screens, the subscribe
button will drop down to a second line, but even then the form still
makes better use of the space overall.

Finally, we can make a small change in the footer to slightly reduce
its height. Float the dt elements within the credits div, since there’s
room to show the label text, like “Web Fonts,” next to the description
text, like “Nadia Serif from Kernest”:

#credits dt {
clear: left;
float: left;
margin: -.05em .2em 0 0;

}

P R E V E N T I N G OV E R L A P P I N G H E A D E R E L E M E N TS

In small mobile screens, the possibility of page elements overlapping
each other is of course increased. You can see this problem in the
header of our example page. With the viewport at 550 pixels wide, the
search form fits fine beside the logo, but at around 400 pixels they
start to overlap. If the user has a larger text size, the overlap will hap-
pen even sooner.

To reduce the chance of overlap, reduce the width of the text field in
the search form by adding this rule to the third media query:

#form-search input[type=text] { width: 100px; }

F I G U R E 6 .1 8 The form
elements in the newslet-
ter subscription block
now all display on the
same line in landscape-
oriented mobile screens.

F I G U R E 6 .1 9 With each
credit label and descrip-
tion on a single line,
the Credits block in the
footer takes up less
space.

CHANGING THE LAYOUT FOR MOBILE DEVICES 233

Next, add a fourth media query below the 550-pixel one. This media
query will target windows less than 401 pixels wide:

@media screen and (max-width: 400px) {
}

Add a rule within this media query to make the label in the search
form display as a block-level element so it will sit on a line above the
text field:

@media screen and (max-width: 400px) {
#form-search label { display: block; }

}

Now the search form takes up less width at both 550 pixels wide and
400 pixels wide, and it’s not likely to overlap the logo even in 320-
pixel wide mobile phone screens (Figure 6.20).

Improving the Look on High-
resolution Displays

The iPhone 4 has a new type of screen called a “retina display” that is
higher resolution than that on previous versions of the iPhone and
iPod Touch. Its resolution is 640 by 960, but it displays the same area
as older iPhones because it uses two device pixels for every one CSS
pixel. This means it doubles up the pixels it uses to display each pixel
you declare in your CSS—this is what makes it high resolution, and
this is why its device width is still 320 (half of 640).

For the most part, you’ll want all versions of the iPhone to have the
same styles, but you may want to take advantage of the retina display
by feeding higher resolution images to the iPhone 4. For instance,
our three product icons look a little pixelated compared to the razor-
sharp text seen on a retina display.

To target the iPhone 4, you can set -webkit-min-device-pixel-ratio,
one of Webkit’s proprietary media features, to 2:

@media screen and (-webkit-min-device-pixel-ratio: 2) {
}

F I G U R E 6 . 2 0

The search form now
also takes up less space,
so it’s less likely to over-
lap the logo in small
mobile screens such as
480 pixels wide (left)
and 320 pixels wide
(right).

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN234

This makes the media query apply only when the phone’s device-to-
CSS pixel ratio is two to one—like on the iPhone 4. Right now, this is
the only device the media query will apply to, but other Apple devices
may have retina displays in the future. So to make this media query
more future-proof, add another condition onto the media feature to
make it apply only to the small screen of the iPhone 4:

@media screen and (-webkit-min-device-pixel-ratio: 2)
¬ and (max-width: 480px) {
}

Now we can feed larger images to the iPhone 4, and then shrink them
using the background-size property, to effectively squeeze more
pixels into the same amount of space. Add these rules inside the new
media query:

.feature {
-webkit-background-size: 64px 64px;
background-size: 64px 64px;

}
#feature-candy { background-image:
 url(images/icon_candy_128-trans.png); }
#feature-pastry { background-image:
 url(images/icon_pastry_128-trans.png); }
#feature-dessert { background-image:
 url(images/icon_dessert_128-trans.png); }

These images are twice as big—128 pixels by 128 pixels—as the size we
really want them to display at: 64 pixels by 64 pixels. When they’re
shrunk down to 64 pixels using background-size, a normal browser
now has twice as many pixels as it needs to display those 64-pixels-
worth of image. So when the iPhone 4 doubles each pixel, it already
has two pixels there to display, instead of having to make a single
pixel of the image twice as large, which would result in blurriness.
The images now look sharp.

This is only one of the changes we could make on the iPhone 4. For
more ideas on how to take advantage of its high-resolution display,
see “Designing for the Retina Display (326ppi)” by Luke Wroblewski
(www.lukew.com/ff/entry.asp?1142).

N OT E : here’s also

a resolution m

feature, which allows

you to feed styles to

devices of a minimum

dpi, but it’s not currently

supported by ebkit-

based browsers—includ-

ing obile Safari on the

Phone 4. ther device

plays might support it,

though, so test it on the

device you’re trying to

target to see if it might

be useful to you.

www.lukew.com/ff/entry.asp?1142

CHANGING THE LAYOUT FOR MOBILE DEVICES 235

The Viewport meta Tag

If you save and test the page at this point in a desktop browser, it will
work just as you expect it to as you narrow the window. But if you
load it up on a smartphone like an iPhone or Android device, you may
be surprised to find that none of the media queries are taking effect.
The page will display with the normal styles, showing a two-column
layout that’s been zoomed out (Figure 6.21).

This is because many smartphones use a virtual viewport that’s larger
than the actual screen size in order to not destroy all those web pages
out there that weren’t designed for mobile by squeezing them into a
tiny 320-pixel-wide viewport. The mobile web development expert
Peter-Paul Koch calls this virtual viewport the “layout viewport” and
the actual viewable area the “visual viewport.”

F I G U R E 6 . 2 1 The page displays
with a wide, two-column layout
in many mobile devices, instead
of using the styles from the third
media query.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN236

When you load a page on a mobile phone that uses a layout viewport,
the mobile browser will zoom out to the maximum level so that the
entire layout viewport fits on screen. This makes everything appear
tiny, but it ensures that your layout looks the same as it does on a typ-
ical desktop browser. Different mobile browsers use different widths
for the layout viewport—Mobile Safari on the iPhone and iPod Touch
uses 980 pixels, Android Webkit uses 800 pixels, Opera uses 850 pix-
els—but the point is that the mobile phones are pretending they have
larger screens than they do, when sometimes you want them to fess
up and show only the number of pixels they truly have.

Luckily, there’s a specific meta tag whose whole purpose is to tell the
mobile browsers that you’ve optimized your site for them and let you
adjust the size and zoom level of the layout viewport.

H OW I T WO R KS

This mobile-optimized tag is called the viewport meta tag, as you set
the name attribute’s value to viewport. It looks like this:

<meta name=”viewport” content=””>

Inside the content attribute, you include whatever instructions you
want to provide about how to handle the viewport. Table 6.3 shows
the possible properties you can include in the content attribute.

TA B L E 6 . 3 content attribute properties for the viewport meta tag

PROPERTY DESCRIPTION

width Width of the viewport in pixels. You can set it to an actual number or

to device-width.

height Height of the viewport in pixels, set as a number or device-height.

initial-scale Scale or zoom level of the viewport the first time it is displayed. A value

of 1.0 makes the page display at its true size, neither zoomed out nor

zoomed in.

minimum-scale Minimum zoom level of the viewport. It controls how far the user is

allowed to zoom out. A value of 1.0 prohibits being able to zoom out

past the true size of the page.

maximum-scale Maximum zoom level of the viewport. It controls how far the user is

allowed to zoom in. A value of 1.0 prohibits being able to zoom in

past the true size of the page.

user-scalable Determines whether or not the user can zoom in and out. Set this to

yes to allow scaling and no to prohibit scaling.

N OT E : For an in-depth

explanation of mobile

viewports as well as

the viewport meta tag,

see Peter-Paul och’s

article “A tale of two

viewports—part two” at

www.quirksmode.org/

mobile/viewports2.html.

www.quirksmode.org/mobile/viewports2.html
www.quirksmode.org/mobile/viewports2.html

CHANGING THE LAYOUT FOR MOBILE DEVICES 237

The viewport meta tag was invented by Apple and is not yet a stan-
dard. However, many mobile browsers beyond iPhones support it.

A D D I N G I T TO T H E PAG E

Let’s add a viewport meta tag to the bakery page now. Add the follow-
ing tag to the head of the page:

<meta name=”viewport” content=”width=device-width”>

This tells the mobile browser that you want it to make the size of the
layout viewport equal to the device width, or the size of the screen.
If you save your page and view it on an iPhone or similar device now,
you will see that the mobile browser is showing only 320 pixels of
width to display the layout in, allowing our media query to take effect
(Figure 6.22).

F I G U R E 6 . 2 2 With the viewport
meta tag added, the iPhone
shows only 320 pixels across the
screen, instead of zooming out to
show 980.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN238

TESTING MEDIA QUERIES

As you develop your media queries, you’ll find yourself spending a lot

of time resizing your browser window back and forth to see if the styles

you’ve written are working the way you expected. Let me share a few

tips for how to make testing media queries a little quicker and pain-free.

First of all, the ProtoFluid web app (http://protofluid.com) is specifically

designed for testing media queries. You put in a URL and then choose

the device, such as iPhone or Motorola Droid, whose screen size you

want to see it in. It pops up a window showing your page constrained

to that width, and allows you to click a button to switch back and

forth between orientations quickly. But be aware that it doesn’t actu-

ally emulate these devices—it just creates a window the same size as

their screen. What you see doesn’t correctly represent the effect of

the viewport meta tag, for instance. Also, ProtoFluid doesn’t support

device-width media queries; use min-width and max-width instead

for testing purposes, and then switch to min-device-width or max-

device-width, if you like, once you’re done with testing.

Another method that I like to use for testing media queries is to preset

a number of different viewport sizes in Firefox using the Web Developer

extension (http://chrispederick.com/work/web-developer). In the Resize

menu, you can add as many window or viewport sizes as you like. Add

ones that match with common device screen sizes, such as 320 by 356

for the viewable area of an iPhone screen in portrait and 480 by 208 for

the viewable area of iPhone landscape, as well as ones that match with

the specific media query widths you’ve written into your style sheet.

Then you can simply click a menu item to instantly resize your browser

to those dimensions and see how things look. Again, this doesn’t truly

emulate the behavior of mobile devices, but it does allow you to easily

test a number of different widths quickly.

http://protofluid.com
http://chrispederick.com/work/web-developer

CHANGING THE LAYOUT FOR MOBILE DEVICES 239

However, if you rotate the iPhone to landscape orientation, the page
still displays in 320 pixels, not 480. Mobile Safari simply zooms in on
it instead of changing the size of the layout viewport, making the logo
and other images a little blurry (Figure 6.23).

This is because the reported device width on iPhones and iPod
Touches is 320 pixels in both portrait and landscape, remember? To
get Mobile Safari to make the layout viewport 480 pixels in landscape
mode, you need to stop it from zooming in on the 320 pixels to fill the
screen. Setting the maximum-scale value to 1.0 keeps the browser (and
user) from being able to zoom in past the true size of the page, so add
it to the meta tag:

<meta name=”viewport” content=”width=device-width,
¬ maximum-scale=1.0”>

F I G U R E 6 . 2 3

In landscape mode, the
iPhone still shows only
320 pixels, zooming in
so it fills the 480 pixels
of width available.

N OT E : T Pad also

sees and uses the view-

port meta tag, even

though its screen dime -

sions are more like a

desktop than a mo

Luckily, the way

we’ve written our meta

tag doesn’t produce any

unwanted results in the

iPad—the layout displays

at 768 pixels in portrait

and 1024 in landscape,

just as we would like.

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN240

Now when you view the page in landscape, Mobile Safari will keep the
same zoom level of 100 percent, forcing it to expand the layout view-
port to 480 pixels to fill the screen (Figure 6.24).

Workarounds for Non-
supporting Browsers
Browsers that don’t support media queries, such as IE 8 and earlier
and Firefox 3.1 and earlier, will simply display a regular page with the
regular styles. Although the design will not look as good at extremely
narrow and wide viewport sizes, the large majority of your users won’t
be using these sizes. You can add a min-width and max-width to the
page to keep these browsers from ever seeing these extreme widths;
override them in the media queries for browsers that don’t need them.

This, of course, does nothing to help mobile devices. Luckily, most
popular mobile devices support media queries (see www.quirksmode.
org/mobile/browsers.html). Many of those that don’t support media
queries do support the handheld media type, however, so you could
feed them their own mobile-optimized sheet this way. The article
“Return of the Mobile Stylesheet” by Dominique Hazaël-Massieux at
www.alistapart.com/articles/return-of-the-mobile-stylesheet explains
a method for feeding a few different style sheets to mobile browsers
based on whether or not they support the handheld media type and
media queries.

F I G U R E 6 . 2 4 Changing
the maximum-scale of the
viewport meta tag forces
the iPhone to expand
the layout to 480 pixels
in landscape mode.

www.quirksmode.org/mobile/browsers.html
www.quirksmode.org/mobile/browsers.html
www.alistapart.com/articles/return-of-the-mobile-stylesheet

THE FINISHED PAGE 241

If these workarounds won’t cut it for your project, you can use
JavaScript. The best script available is css3-mediaqueries-js by Wouter
van der Graaf (http://code.google.com/p/css3-mediaqueries-js). All you
have to do is link to the script—it automatically parses the media que-
ries that exist in your CSS and makes them work in older browsers.

This script is included in the exercise files you downloaded for this
chapter, so add a link to it in the head of the page:

<script src=”scripts/css3-mediaqueries.js”></script>

Save the page and view it in a browser that doesn’t support media
queries natively, like IE 8. Resize your window and you will see that
the layout now changes to use the media queries. It’s as simple as that!

The only downside to using this script is that it adds another HTTP
request, plus 16 kilobytes of data for users to download. Because of
this, you may want to apply it only to the browsers that need it most—
IE 6 through 8—by using conditional comments:

<!--[if lte IE 8]>

<script src=”scripts/css3-mediaqueries.js”></script>

<![endif]-->

Although browsers such as Firefox 3.1 will now not be able to under-
stand and use the media queries, your user base is not likely to
contain many visitors using these browsers. In this case, I think it’s
probably better for a few non-IE- and non-media-query-supported
visitors to miss out on the media queries than for all browsers to have
to download the script.

The Finished Page
The bakery page now has a unique layout for several different window
sizes, making it look good and work well on both large-screen desktop
monitors as well as small-screen mobile devices (Figure 6.25).

N OT E : The exercise

files contain the latest

version of the script

available at the time

of this writing (the

script is dated March

2010), but there may

be a newer version by

the time you read this,

which you should use

instead. heck at http://

code.google.com/p/

css3-mediaqueries-js.

N OT E : If you’re using

jQuery, there are a couple

plugins that ma

media queries work;

see www.protofunc.

com/scripts/

mediaqueries and www.

csslab.cl/2009/07/22/

jquery-browsersizr.

N OT E : The completed

page showing all of

these effects is named

in the exercise files for

this chapter.

www.protofunc.com/scripts/jquery/mediaqueries
www.protofunc.com/scripts/jquery/mediaqueries
www.protofunc.com/scripts/jquery/mediaqueries
www.csslab.cl/2009/07/22/jquery-browsersizr
www.csslab.cl/2009/07/22/jquery-browsersizr
www.csslab.cl/2009/07/22/jquery-browsersizr
http://code.google.com/p/css3-mediaqueries-js
http://code.google.com/p/css3-mediaqueries-js
http://code.google.com/p/css3-mediaqueries-js
http://code.google.com/p/css3-mediaqueries-js

CHAPTER 6: DIFFERENT SCREEN SIZE, DIFFERENT DESIGN242

F I G U R E 6 . 2 5 The bakery page in its four
different sizes and designs.

7
Flexing Your
Layout Muscles
Although we’ve been encouraged for many years to use CSS

to control the layout of our pages, the CSS 2.1 mechanisms

that can be used for layout are quite slim. Absolute positioning

is not used often by most developers since it’s too rigid; floats

have been used extensively, but were never really meant for

full-page columnar layouts, and are limited in what effects

they can produce. CSS3 introduces a number of new layout

mechanisms that will make the building of multi-column

layouts much easier and also allow for creating complex

layout behaviors that simply can’t be accomplished with the

properties and techniques of CSS 2.1. While these techniques

are still somewhat experimental, this chapter will get your

prepared for how layouts will be built in the future, as well

as introduce you to a few practical ways you can use the new

flexible box layout model now.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES244

WHAT YOU’LL LEARN

We’ll be creating multi-column layouts for the entire page, as well as widgets on the page, using

these pieces of CSS3:

The flexible box layout model

The box-sizing property

We’ll also preview two of the upcoming layout systems in CSS3—template layout and grid positioning.

Changes on the Horizon
Throughout this book, we’ve focused on practical CSS3 techniques
that can be used in your work right away as a progressive enhance-
ment method. This final chapter, however, is going to cover many
properties that have poor or even nonexistent browser support, and
which are much more essential to the page, rather than being visual
effects that older browsers can do without. However, I still think
they’re important to learn, as they offer powerful new ways to build
web pages that will cause a huge shift in our web design and develop-
ment process. Plus, there are ways to use them in a more limited man-
ner now for effects that degrade well in non-supporting browsers.

So think of this final chapter as primarily a look ahead at how we’ll
be building sites a few years from now. By learning these new tech-
niques now, you’ll be able to gradually introduce them into your sites
in small ways, and when they’re finally ready for full-blown use, you’ll
be at the front of the pack.

The most fully developed, best supported, and thus practical of these
new layout techniques is called the flexible box layout model (to which
most of the chapter will be devoted). The flexible box layout model
lets you specify whether boxes should be laid out horizontally or
vertically, how they should be aligned with each other, and how they
should share the available space. At first, this doesn’t sound like such
a big deal—don’t existing CSS 2.1 properties let you do all this? For the
most part, yes—but not with such ease and flexibility as the flexible
box model allows.

N OT E : he flexible box

model doesn’t replace

the CSS 2.1 box model;

it’s an additional box

model that works together

with it.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 245

Creating Multi-column Layouts
Without Floats or Positioning
The flexible box layout model introduces a dedicated system for cre-
ating multi-column and multi-row layouts that works very differently
than floats or absolute positioning. It’s easiest to see how the flexible
box model works with real examples, so download the exercise files
for this chapter at www.stunningcss3.com, and open the file flex-
box_start.html in your code editor.

This page is the same bakery page from Chapter 6, but I’ve removed
the media queries just to keep things simple for this example, and I’ve
gotten rid of the CSS rules that created side-by-side columns. Each of
the divs stacks vertically down the page, as do all block-level elements
by default (Figure 7.1). We can use flexible box layout to make them
display horizontally instead.

F I G U R E 7.1 Without using float,
the divs stack vertically down
the page.

www.stunningcss3.com

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES246

The first step to making blocks sit next to each other horizontally
is to set the display value of their container to box—a new value in
CSS3 for the familiar old display property. A div named content
is the container for the two main columns, the content-main and
content-secondary divs; this wrapper div was not present in the
page in Chapter 6, but I’ve added it here because it’s necessary for
using flexible box layout. In the styles in the head of the page, add a
new rule for #content to match the following:

#content {
 display: -moz-box;
 display: -o-box;
 display: -webkit-box;
 display: box;
}

Setting display to box turns the div into what the W3C calls a flexible
box, or often simply box, and tells the browser that you want to switch
to the flexible box model for this div and its children. Firefox and
Webkit-based browsers—the only browsers that currently support the
flexible box layout model—support the values -moz-box and -webkit-
box, respectively. Right now, no browser supports the non-prefixed
box value, and Opera doesn’t yet support -o-box, but we’ve added
these properties for future compatibility.

EXTR A WR APPER divs

The fact that I had to add an extra wrapper div around the content-

main and content-secondary divs illustrates one of the disadvantages

inherent in the flexible box model: it requires extra nesting of divs that

float-based layouts often don’t need. You always have to have that

outer div to set to display: box before you can turn the inner div into

columns. A few extra wrapper divs is not a huge problem, especially

given the advantages of simplified CSS and broadened layout options

that the flexible box model offers, but it’s worth mentioning—I believe in

full disclosure here!

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 247

IE 9 COMPATIBILIT Y

The IE 9 platform preview available at the time of this writing supports

flexible box layout if you use the -ms- prefix on the properties and

values, but the current IE 9 beta—which is newer than the platform

preview—does not support it, with or without the prefix. Apparently

Microsoft decided to remove the functionality when it created the beta.

Whether or not the final version of IE 9 will have it added back in, and

whether or not it will use the prefix, is unclear. You can test the -ms-

properties and values to see if IE 9 does support it by the time you’re

reading this. Or, if you want to be extra safe, you can just go ahead and

add them all on preemptively now.

Next, tell the browser that you want to lay out the child elements hor-
izontally by using the box-orient property, along with the browser-
specific equivalents:

#content {
 display: -moz-box;
 display: -o-box;
 display: -webkit-box;
 display: box;

-moz-box-orient: horizontal;
 -o-box-orient: horizontal;
 -webkit-box-orient: horizontal;
 box-orient: horizontal;
}

When you set display to box, the browser automatically sets box-
orient to inline-axis, which, in languages like English that run
horizontally, does the same thing as a value of horizontal does:
it lays out the blocks side by side instead of top to bottom. So,
technically, we don’t need to include the box-orient property here—
the boxes would be horizontal without it. But I’ve included it here in
the interest of clarity, so you can see how to use this new property.

Adding this rule makes the page change dramatically in appearance;
the content-main and content-secondary divs are now sitting side by
side, but you can hardly tell it because each has grown to a ridiculous
width—so wide, in fact, that you can’t even see any of the secondary
content in the viewport in this example. Instead, you see an extensive
horizontal scrollbar in the browser (Figure 7.2).

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES248

This happens because children of flexible boxes are made as wide as
needed for their content; this is called intrinsic sizing, similar to how
floats without widths are sized. The longest sentence or widest image
in the div determines its width. In many cases, this would be a desir-
able thing, but not in the case of our content divs. To overcome this,
you can either give each div a width or max-width, or you can make
one or both of the divs flexible using the box-flex property.

Making Blocks Flex

The box-flex property doesn’t actually stop the child divs from being
sized intrinsically, but it does force the content within them to wrap
so they don’t push their container wider than 100 percent width. It
makes the divs adjust their width flexibly to the width of their con-
tainer. If the total of the children’s intrinsic widths is less than the
width of the container, the children increase in width to fill the extra
space. If the total of the intrinsic widths is more than the width of the
container, the children decrease in width.

The amount they increase or decrease by is a proportion of their
intrinsic widths, not an absolute value. Flexible blocks also flex in
proportion to each other. For instance, a block with a box-flex value
of 2 is twice as flexible as a block with a box-flex value of 1—the extra
space would be doled out to the blocks in a two-to-one ratio.

F I G U R E 7. 2 The two
content divs are now
placed side by side, but
overflow tremendously
off the right side of the
viewport.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 249

This is easiest to see with real examples. Figure 7.3 shows a gray
800-pixel-wide box holding two inflexible divs at their intrinsic
sizes; at the text size shown, the yellow div is 99 pixels wide and the
pink div is 493 pixels wide. That leaves 208 extra pixels of space
inside the box. If you set the box-flex value to 1 on both divs, they
would divide up the 208 pixels of extra space in a one-to-one ratio—
in other words, they’d split it evenly (Figure 7.4). But if you gave the
pink div box-flex: 2, it would get twice as much of the extra space as
the yellow div gets (Figure 7.5).

99 pixels 493 pixels 208 extra pixels

F I G U R E 7. 3 The yellow and pink divs are both sized only as large as their content, leaving extra space within
their gray container div.

104 extra pixels104 extra pixels

F I G U R E 7. 4 Both divs have 104 pixels of space added on to them.

139 extra pixels69 extra pixels

F I G U R E 7. 5 Out of the 208 extra pixels, the pink div gets 139 pixels added on to it, while the yellow one gets
only 69 pixels added, since their box-flex values are in a two-to-one ratio.

It works the same way when the blocks are too wide for their parent
box—the overage of space just gets subtracted from each block in the
ratio set by the box-flex values. For instance, in Figures 7.6 and 7.7,
the widths of the containing boxes have been reduced to 500 pix-
els wide, less than the total of the intrinsic widths of the child divs.
In Figure 7.6, both children divs have box-flex: 1, so both are shrunk
by 46 pixels. In Figure 7.7, the pink div has box-flex: 2, so it gets
shrunk twice as much as the yellow div.

N OT E : The amount

that blocks get stretched

or shrunk due to box-

flex is constrained by

the blocks’ maximum

and minimum widths,

whether explicit or intrin

sic, so sometimes the

width values you end

up with might not be

exactly what you expect.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES250

46 pixels
subtracted

46 pixels
subtracted

original width

original width

61 pixels
subtracted

original width

31 pixels
subtracted

original width

In our page, let’s first try making both the content-main and content-
secondary divs equally flexible by setting box-flex to 1 in the existing
#content-main and #content-secondary rules:

#content-main {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
 margin-bottom: 40px;
}
#content-secondary {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
 margin-bottom: 40px;
}

Now both divs are constrained within the wrapper div (Figure 7.8).
But Firefox and Webkit-based browsers decide differently how large
to make each content div; Figure 7.8 shows the layout in Firefox, and

F I G U R E 7. 6 Both
divs have 46 pixels
subtracted from their
widths in order to fit in
the 500-pixel-wide box.

F I G U R E 7.7 The pink div
has 61 pixels subtracted
from it, while the yellow
one has only 31 pixels
subtracted, since their
box-flex values are in a
two-to-one ratio.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 251

Figure 7.9 shows it in Chrome, both at the same viewport width. I
don’t know which of these is correct—or even if either is technically
wrong, as the W3C spec may not provide enough detail on how the
browser should determine an element’s intrinsic size.

F I G U R E 7. 8 The two
content columns being
sized intrinsically by
Firefox.

F I G U R E 7.9 The two
content columns being
sized intrinsically by
Chrome; note how
much larger the sidebar
is than in Firefox.

N OT E : If the boxes

were stacked vertically

instead of horizontally,

the box-flex value

would affect their height,

not their width. It co -

trols the flexibility of the

space along the same

axis on which the boxes

are laid out.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES252

Regardless, it’s clear that in this case, setting both of the content divs
to be flexible is not going to work for our design. Instead, let’s give the
sidebar an explicit width, as well as a left margin to create some space
between it and the main content column:

#content-secondary {
 width: 16em;

margin: 0 0 40px 40px;
}

Now the sidebar will always be 16 ems wide and the main content
column will flex to fill whatever space is left after the sidebar and its
margins have been accounted for (Figure 7.10). This works even if the
overall layout isn’t liquid to adjust to the viewport; if the wrapper div
was set to 960 pixels wide, for instance, the sidebar would take up 16
ems of that, and then the main content column would take up the
remaining number of pixels. The “flex” part of the box-flex property
refers to the block’s ability to flex in order to fill whatever space is
available in its parent box—even if that parent is fixed-width—not
necessarily to flex to fill the viewport.

N OT E : he page

with all the changes

to this point is named

flex-box_1.html in the

exercise files for this

chapter.

F I G U R E 7.1 0 The side-
bar is now 16 ems wide,
leaving the rest of the
width for the main con-
tent column.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 253

Adding Columns

This layout illustrates one of the advantages of the flexible box model:
you can easily combine elements of different units side by side. The
main content column is in percentages (implicitly), the margin in
pixels, and the sidebar in ems. This type of hybrid layout is possible
without flexible box layout, but it’s more difficult and messy.

Using flexible box layout, on the other hand, made creating this two-
column hybrid layout pretty simple. Here’s all it took:

1. Set the display of the container of the columns to box.

2. Set the box-orient of the container to horizontal.

3. Give the sidebar a width.

4. Make the main content column fill the rest of the space using
box-flex.

If you had more columns, you could give those widths as well, or
make them flex to the space available using box-flex. You wouldn’t
need to readjust all the widths and margins to make room for the
extra columns—everything adjusts automatically.

To see this in action, let’s add another column to the footer. First,
we need to put the existing two divs in the footer into the same two-
column layout as the two content divs are in. Add the display and
box-orient properties to the existing #footer rule:

#footer {
display: -moz-box;
display: -o-box;
display: -webkit-box;
display: box;
-moz-box-orient: horizontal;
-o-box-orient: horizontal;
-webkit-box-orient: horizontal;
box-orient: horizontal;
padding: 10px 0;
border-top: 1px dashed #3C9;

}

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES254

Next, add these new rules for the divs within the footer:

#about {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
}
#credits {
 width: 10em;

margin: 0 0 40px 40px;
}

And just like that, we have a two-column layout in the footer.
Changing it into a three-column layout is just as simple. First, add
the third div in between the about and credits divs. Copy and paste
the following HTML from the file flex-box_2.html from the exercise
files for this chapter:

<div id=”learn-more”>
 <h2>Learn More</h2>
 <p><a href=”http://www.w3.org/TR/css3-mediaqueries/”

>Media queries are a way of tailoring the site
design to the characteristics of each user’s display,
using regular CSS embedded in your main style sheet.

 </p>
</div>

Now, add a rule for the learn-more div, setting its width and margins:

#learn-more {
 width: 10em;

margin: 0 0 40px 40px;
}

Without making any other changes to the CSS, the footer now has a
three-column layout instead of two (Figure 7.11). We didn’t need to
adjust the widths or margins of the about or credits divs; since the
about div had been set to flex, it automatically shrank to make room
for the new third column. Again, this would happen just the same if
the wrapper were a fixed pixel width instead of a liquid width that
adjusts to the viewport.

F I G U R E 7.1 1 The about
div automatically flexes
to decrease in width to
make room for the new
learn-more div.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 255

This ability to add and remove columns easily without having to
change dimensions of surrounding elements can make your CSS
cleaner and easier to develop in a number of real scenarios. For
instance, your site may have a news sidebar that shows on only cer-
tain pages, such as the home page, Newsroom, and About Us sections
of the site. The two-column pages and the three-column pages that
include the news sidebar can all be coded identically, save for the
addition of the news div in the HTML, because the other divs in the
page will automatically adjust to make room for it if it’s there. You
don’t have to create separate CSS rules for the two- and three-column
versions of all the divs in the page, like this:.

body.two-col #content { width: 75%; }
body.three-col #content { width: 60%; }
body.two-col #nav { width: 25%; }
body.three-col #nav { width: 20%; }

Reordering Columns

Another benefit of using flexible box layout is that it’s easy to visually
reorder columns without having to touch the HTML. There are a cou-
ple properties that will help you do this.

The simpler of these properties is the box-direction property.
If you want the sidebar to be on the left instead of the right, for
instance, set box-direction to reverse in the #content rule, and
change the left margin on the sidebar to a right margin:

#content {
 display: -moz-box;
 display: -o-box;
 display: -webkit-box;
 display: box;
 -moz-box-orient: horizontal;
 -o-box-orient: horizontal;
 -webkit-box-orient: horizontal;
 box-orient: horizontal;

-moz-box-direction: reverse;
 -o-box-direction: reverse;
 -webkit-box-direction: reverse;
 box-direction: reverse;
}
#content-secondary {
 width: 16em;
 margin: 0 40px 40px 0;
}

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES256

This makes the browser lay out the divs horizontally, starting on the
right side instead of the left. Since the content-main div comes first
in the HTML, the browser starts off with it, placing it on the right
side, and then puts the content-secondary div to its left (Figure 7.12).
If the divs were stacked vertically instead of horizontally, setting box-
direction to reverse would make them stack from bottom to top
instead of top to bottom.

For more control over where each block is placed, you can use the
box-ordinal-group property to assign a placement order. The blocks
with a box-ordinal-group value of 1 are placed first, then the ones
with a value of 2, and so forth. This means that if you wanted the
learn-more div in the footer to be placed on the far left instead of in
the middle, you set the box-ordinal-group values on the three footer
children divs accordingly:

#about {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;

-moz-box-ordinal-group: 2;
 -o-box-ordinal-group: 2;
 -webkit-box-ordinal-group: 2;
 box-ordinal-group: 2;
}

F I G U R E 7.1 2 Setting
box-direction to
reverse places the
first div in the HTML,
the content-main div,
on the right side of
the page.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 257

#credits {
-moz-box-ordinal-group: 2;
-o-box-ordinal-group: 2;
-webkit-box-ordinal-group: 2;
box-ordinal-group: 2;
width: 10em;
margin: 0 0 40px 40px;

}
#learn-more {

-moz-box-ordinal-group: 1;
-o-box-ordinal-group: 1;
-webkit-box-ordinal-group: 1;
box-ordinal-group: 1;
width: 10em;
margin: 0 0 40px 40px;

}

Also, switch the learn-more div’s left margin over to the right:

#learn-more {
 -moz-box-ordinal-group: 1;
 -o-box-ordinal-group: 1;
 -webkit-box-ordinal-group: 1;
 box-ordinal-group: 1;
 width: 10em;
 margin: 0 40px 40px 0;
}

PROBLEMS IN REVERSE

Be careful when setting box-direction to reverse—this can reverse

more than just the stacking order of the boxes. For instance, content

may overflow to the left instead of the expected right. It can make other

properties, such as box-align and box-pack, which control place-

ment and alignment of blocks (more on these later), contradict their

normal behavior. If you’re ripping your hair out trying to figure out why

a block is doing the opposite of what you’re telling it to, check to see if

you’ve reversed its direction—that might be the culprit. Test it well!

Since the learn-more div now has a lower box-ordinal-group value
than its sibling divs, the browser places it first. And because we’ve
told it to place the boxes from left to right (the box-orient is hori-
zontal and the box-direction is implicitly normal on the footer), that
puts the learn-more div on the far left (Figure 7.13). The browser then

N OT E : The page

with all the changes

to this point is named

flex-box_2.html in the

exercise files for this

chapter.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES258

places the about and credits divs to the right. Since these divs both
have the same box-ordinal-group value, the browser decides which
of the two to place first by looking at the source order: boxes that
come first in the source get placed first, as you’re used to with normal
boxes in the flow of the page.

Being able to control the visual placement of blocks in a layout with-
out regard for the source order is incredibly powerful. It lets you put
the most important content first in the HTML, even if you don’t want
that content to display first visually, which helps the page degrade
well in assistive technology, linearize well in devices without CSS
support, and perform better in search engines.

Equal-height Columns

Another nice benefit of flexible box layout—though a more trivial
one—is that creating equal-height columns is dead easy.

Many designers from the pre-CSS days (like me) got used to being
able to easily create equal-height columns using tables. Cells in the
same table row automatically expand to the same height, but indi-
vidual divs that just so happen to display side by side have no reason
to do this. In a quest to get div-based columns in a layout to appear
to be equal in height, designers and developers came up with many
clever but hacky CSS solutions. These equal-height column tech-
niques might involve one or more extra wrapper divs, background
images (even when all you wanted was a solid background color, or no
background at all but just a border), and relatively complicated CSS.

Using flexible box layout for equal-height columns still requires a
wrapper div, but it doesn’t take any images (helping your pages load
faster by saving HTTP requests), and it uses very simple CSS. All you
have to do is set the box-align property to stretch on the flexible box,
which is the parent of the columns. This is the default value of the box-
align property, so you can see it working in our example page simply
by setting background colors on the two main content columns:

F I G U R E 7.1 3 Even
though the learn-more
div comes in between
the about and credits
divs in the HTML, its
box-ordinal-group

value lets the browser
place it on the far-left
side of the page.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 259

#content-main {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
 margin-bottom: 40px;
 background: #dcdcdc;
}
#content-secondary {
 width: 16em;

margin: 0 40px 40px 0;
 background: #fcc;
}

Save the page and view it in Firefox, Safari, or Chrome. The pink
background of the sidebar stretches down to the end of the gray back-
ground of the much-longer main content column (Figure 7.14).

Again, this happens because boxes by default have box-align set to
stretch; we’d get the same effect if we added it explicitly to the
#content rule, like this:

F I G U R E 7.1 4 The two
content divs stretch
to the same height,
because the children
of boxes are given a
box-align value of
stretch by default.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES260

#content {
 display: -moz-box;
 display: -o-box;
 display: -webkit-box;
 display: box;
 -moz-box-orient: horizontal;
 -o-box-orient: horizontal;
 -webkit-box-orient: horizontal;
 box-orient: horizontal;
 -moz-box-direction: reverse;
 -o-box-direction: reverse;
 -webkit-box-direction: reverse;
 box-direction: reverse;
 -moz-box-align: stretch;
 -o-box-align: stretch;
 -webkit-box-align: stretch;
 box-align: stretch;
}

The box-align property controls how a box’s children are aligned
relative to each other perpendicularly to the box’s orientation. So if
the box’s children are being laid out horizontally, as in our example,
box-align controls the vertical alignment; if our blocks were stacked
vertically, box-align would control their horizontal alignment.

The possible values for box-align are described in Table 7.1. Note that
the definitions for start and end are the opposite for reverse-direction
boxes; for instance, horizontal blocks that are reversed and have a box-
align value of start should be aligned on the bottom, not the top as
usual. However, browsers don’t currently follow this.

TA B L E 7.1 box-align values

VALUE HORIZONTAL CHILDREN VERTICAL CHILDREN

start Aligned at the top Aligned on the left

end Aligned on the bottom Aligned on the right

center Vertically centered (equal space on its top and

bottom)

Horizontally centered (equal

space on its left and right)

baseline The first text line of each block are aligned on

the baselines of the text, and then the highest

child is placed against the top edge of the box

Same as center*

stretch Stretched vertically to fill the height of the box Stretched horizontally to fill the

width of the box

* Firefox treats a value of baseline for vertical blocks the same as start, not the same as center.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 261

Vertical and Horizontal Centering

The box-align property not only makes equal-height columns pos-
sible, but it also means that vertical centering—one of the hardest
effects to accomplish with CSS 2.1—is now an easy feat, even when
both the parent box and child block have unknown heights. In addi-
tion, another new property named box-pack makes horizontal cen-
tering in traditionally tricky situations really simple too.

Let’s try out both types of centering in the header area of our page.
I’ve changed the HTML markup for this area slightly from the page
used in Chapter 6: now the header div wraps around the logo image
and search form, and the nav-main div is separate.

V E RT I C A L LY C E N T E R I N G T H E LO G O A N D S E A R C H FO R M

Having a wrapper around only the logo and form makes it possible to
vertically center these two elements in relation to each other.

First, make the header div into a flexible box by setting its display to box:

#header {
display: -moz-box;
display: -o-box;
display: -webkit-box;
display: box;
padding: 20px 0;

}

As explained earlier, children of flexible boxes will display horizontally
by default, without setting the box-orient property, so this CSS change
alone puts the logo and search form on the same line (Figure 7.15).

F I G U R E 7.1 5 Now that
the logo and the search
form are children of a
flexible box, they sit side
by side.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES262

To get the search form to display on the right side of the screen
instead of up against the logo, you need to tell it to stretch to fill the
rest of the space left over after the logo. You also need to set text-
align to right to move the content within the form to its right side.
Add a new rule for #form-search to do both of these things:

#form-search {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
 text-align: right;
}

Now the search form is over on the right where we want it in Safari
and Chrome (Figure 7.16). But in Firefox, it hasn’t budged. This is
because Firefox is sizing the header div intrinsically, making it only as
wide as its content. This behavior is correct for children of boxes, but
Firefox should not be doing it to the box itself. But it’s easy to fix—just
set the width of the header div to 100 percent:

#header {
display: -moz-box;
display: -o-box;
display: -webkit-box;
display: box;
width: 100%;
padding: 20px 0;

}

This makes Firefox stop shrinkwrapping the header and instead
stretch it out to fill the full width of the wrapper div. Now the search
form is on the right side of the screen in Firefox as well as in Webkit-
based browsers.

F I G U R E 7.1 6 In Webkit-
based browsers, the
search form now flexes
to fill all the space to
the right of the logo,
and the content within
the form is aligned to
the right.

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 263

Now that the logo and form are in the right spots horizontally, let’s
move them to the vertical spots we want. All you have to do is set box-
align to center on the header div:

#header {
display: -moz-box;
display: -o-box;
display: -webkit-box;
display: box;
-moz-box-align: center;
-o-box-align: center;
-webkit-box-align: center;
box-align: center;
width: 100%;
padding: 20px 0;

}

And with that, the logo and search form are aligned in the middle
with each other and vertically centered within the header div
(Figure 7.17). No matter how large the font size for the form grows,
or if the elements of it wrap onto two lines, it will always adjust and
stay vertically centered.

H O R I ZO N TA L LY C E N T E R I N G T H E N AV B A R

Now we can turn our attention to the next item on the page, the nav
bar. To center it horizontally in the wrapper div, setting box-align to
center won’t work—remember that it applies only to the vertical space
around horizontal boxes (and vice versa for vertical boxes). We need a
property that affects the extra space in the same axis as the blocks—in
this case, horizontal.

F I G U R E 7.1 7 Setting
box-align to center on
the header div vertically
centers the logo and
search form.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES264

DISAPPEARING BOXES AND BLOCKS

If you’re using the flexible box model on just an element or two rather than a whole page layout,

it’s quite possible that you’d have the float or overflow properties applied to an element that

also has a display value of box, or is the child of a flexible box. If this is the case, you’re going to

run into trouble.

Safari and Chrome have a bug that makes boxes and children of boxes with the float property on

them disappear. While float is not allowed on the children of boxes, it shouldn’t make anything fail

to show up—the property should just be ignored. Firefox has a similar bug that makes boxes disap-

pear when they have overflow set on them, rather than float.

Both of these bugs make combining flexible box layout with older layout methods (in order to deliver

fallbacks to older browsers) much more difficult. For instance, in the nav bar in our example page,

the li elements are each floated, which makes the links line up horizontally in all browsers. If you

wanted the ul element to contain its floated children, you might use one of the common float-con-

tainment methods of either floating the ul element or setting overflow: auto or overflow: hid-

den on it. But since the ul element is the child of a flexible box, floating it would make it disappear in

Webkit browsers, and setting overflow would make it disappear in Firefox.

This is exactly what the box-pack property does. We can use it to move
the ul element into the center of the nav-main div. To do so, first
turn the nav-main div into a box and set its box-pack value to center.
Make these changes to the existing #nav-main rule:

#nav-main {
display: -moz-box;
display: -o-box;
display: -webkit-box;
display: box;
-moz-box-pack: center;
-o-box-pack: center;
-webkit-box-pack: center;
box-pack: center;
overflow: auto;
margin: 0 0 20px 0;

}

Next, you need to make a couple changes for Firefox’s sake. Add
width: 100% to make the div stretch to fill its container. Also, remove
the overflow: auto declaration to fix a Firefox bug that would cause
the nav-main div to disappear (see “Disappearing boxes and blocks”
above for more explanation):

CREATING MULTI-COLUMN LAYOUTS WITHOUT FLOATS OR POSITIONING 265

#nav-main {
display: -moz-box;
display: -o-box;
display: -webkit-box;
display: box;
-moz-box-pack: center;
-o-box-pack: center;
-webkit-box-pack: center;
box-pack: center;
width: 100%;
margin: 0 0 20px 0;

}

If you save your page and view it in Firefox, Safari, or Chrome now,
you’ll see that the nav bar is indeed horizontally centered within the
page (Figure 7.18). Setting box-pack to center tells the browser to take
whatever extra horizontal space is left over within the nav-main div
and divide it equally on either side of the ul block within it.

WR APPING A BOX’S CHILDREN

By default, the children of a flexible box will not wrap onto multiple lines if there isn’t enough room

to display them all on one line—they’ll just overflow. This is exactly opposite to how floats work.

Although floats’ ability to wrap onto multiple lines is sometimes frustrating, overall it’s actually a

good thing. For instance, the li elements in the nav bar are each floated, so that when the window

is too narrow to display them all side by side, they wrap, allowing all to stay in view at all times. If the

ul element were instead a flexible box with horizontally-oriented children, the li elements would

not wrap, but would stubbornly remain on the same line in even very narrow windows or with very

large font sizes.

In cases like this, where you do want wrapping to occur, you can set the box-lines property to

multiple on the box. Unfortunately, it’s not supported by any browser yet. So, for now, don’t use

flexible box layout on anything where wrapping is essential.

N OT E : The completed

page showing all of

these effects is named

flex-box_final.html in

the exercise files for this

chapter.

F I G U R E 7.1 8 Setting
box-pack to center
on the nav-main div
horizontally centers
the nav bar.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES266

All of the possible values for box-pack are described in Table 7.2.
Remember, as with box-align, the definitions for start and end are
the opposite for reverse-direction boxes. Firefox does follow this, but
Webkit-based browsers do not.

TA B L E 7. 2 box-pack values

VALUE HORIZONTAL CHILDREN VERTICAL CHILDREN

start Placed on the left side of the box Placed at the top of the box

end Placed on the right side of the box Placed at the bottom of the box

center Horizontally centered (equal space on left

and right)

Vertically centered (equal space

on top and bottom)

justify* Space divided evenly in between each child,

with no extra space placed before the first

child or after the last child. If only one child,

same as start.

Same

* The justify value of the box-pack property is not supported by Firefox; it’s simply treated the
same as start.

Reality Check: What Works Now
Unfortunately, most of the work we’ve done on this layout is just
an illustration of what’s possible—not a demonstration of how you
should actually use flexible box layout today. In IE, Opera, and
other browsers that don’t support it, the layout looks like a broken
mess (Figure 7.19). This is not like using border-radius and having
rounded corners not show up in IE; here, the CSS3 properties we’re
using affect the layout of the whole page and are more than simple
decorative effects.

The latest version of Modernizr can detect whether the browser sup-
ports the flexible box model, so we could use it to feed non-supporting
browsers alternate layout styles using floats or other techniques. Of
course, this would usually defeat the purpose of using the flexible box
model to create the layout to begin with—if you have to spend the time
creating a fallback float-based layout that will work everywhere, why
take extra time to create a flexible-box-based layout too?

REALITY CHECK: WHAT WORKS NOW 267

F I G U R E 7.1 9 The layout is broken in brows-
ers that don’t support flexible box layout,
such as IE 8.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES268

But don’t despair! There are some practical uses of flexible box layout
today. In the previous section, I showed how it can be used to create
full-page multi-column layouts because it illustrates most of the flex-
ible box properties nicely, and because it demonstrates how we all
might be building layouts in the future. But there are ways you can
use it in a more limited manner right now.

For instance, centering the horizontal nav bar was a cinch using the
flexible box model, and it degrades well in non-supporting brows-
ers. Because I didn’t use flexible box layout to make the individual
links line up horizontally, but just to center the ul as a whole, IE and
Opera still see a horizontal list of links—it’s just left-aligned instead of
centered. In many cases, this would be a perfectly acceptable fallback
for non-supporting browsers, and it would keep you from having to
resort to other, more complicated methods of horizontally centering
a float-based nav bar.

In addition to centering a horizontal nav bar, let me show you a cou-
ple more examples of practical uses of flexible box layout.

Flexible Form Layout

One great way to use flexible box layout is to lay out and align form
elements easily. As an example of this, open the exercise file form_
start.html in a browser. This is the same page used in Chapter 6, with
all the floats restored, so that the layout works in all browsers.

In the media query for viewports of 550 pixels and narrower, the
label, text field, and button of the email newsletter subscription
form lay out in a single line (Figure 7.20). However, the form doesn’t
stretch to fill up the entire width of the box it’s in. It would be nice
if the text field adjusted in width to fill up the remaining space left
over from the label and button. This is possible to do without flexible
box layout, but it involves nesting a number of divs and using com-
plicated absolute positioning rules (see http://friedcellcollective.net/
outbreak/2009/10/04/fluid-searchbox).

F I G U R E 7. 2 0 The text
field is a fixed width—
it looks fine now, but
doesn’t stretch to fill up
the entire width avail-
able to it.

http://friedcellcollective.net/outbreak/2009/10/04/fluid-searchbox
http://friedcellcollective.net/outbreak/2009/10/04/fluid-searchbox

REALITY CHECK: WHAT WORKS NOW 269

But using flexible box layout makes the text-field-stretching effect
easy to accomplish. First, find the max-width: 550px media query
near the bottom of the style element in the head of the page. Delete
the following two rules within it:

#form-newsletter * { display: inline; }
#form-newsletter input[type=text] { width: auto; }

We’re deleting these rules to start out with a blank slate, so you can
see how the new flexible box layout rules affect the styling of the
email newsletter form without anything else interfering.

Next, turn the form into a flexible box; this will make its children lay
out horizontally by default. You also need to set its width to 100 per-
cent to make it stretch to fill the whole block it’s in. Do this in a new
rule for #form-newsletter inside the media query:

#form-newsletter {
 display: -moz-box;
 display: -o-box;
 display: -webkit-box;
 display: box;
 width: 100%;
}

Next, add a small amount of margin in between each of the elements
in the form:

#form-newsletter * {
 margin-right: 3px;
}
#form-newsletter :last-child {
 margin-right: 0;
}

So far, the form looks pretty much as it did before—like it does in
Figure 7.20—the text field is still not stretching to fill the available
space. That’s because all the elements of the form are being sized
intrinsically right now. That’s perfect for the label and the button—we
want them both to be as wide as needed for their text and no wider—
but we haven’t told the browser we want the text field to flex. Do that
now by adding the following new rule within the media query:

#form-newsletter input[type=text] {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
}

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES270

Save the page and view it in Firefox, Safari, or Chrome. Narrow your
window under 550 pixels to activate the media query, and then check
out the newsletter subscription form. Narrow your window further
and watch how the text field always fills the available space between
the label text and the subscribe button (Figure 7.21). Even if this box
were set to a fixed pixel size, if the user has a larger or smaller text
size than the default, changing the overall size of the label and button,
the text field will also adjust to whatever space is left.

This effect works great for search fields in headers. You can have label
text, a text field, a submit button, and even a link to an advanced
search, all lined up on one line, with the text field adjusting to what-
ever space is available. Form elements can also sometimes be hard to
align as you would like, but box-align and box-pack can really sim-
plify that task.

FA L L B AC K ST Y L E S FO R N O N - S U P P O RT I N G B R OWS E R S

The subscription form now looks better in Firefox and Webkit-based
browsers, but it looks a little worse in Opera and IE 9—browsers that
do support media queries but don’t support flexible box layout. Each
element in the form is on its own line (Figure 7.22).

Even though we can’t feed these non-supporting browsers their own
non-flexible-box styles, unseen by Firefox and Webkit, we can—in this
case—provide fallback styles seen by all browsers that we then over-
ride for Firefox and Webkit without the non-supporting browsers
knowing it.

F I G U R E 7. 2 1 The text
field now stretches to
fill the whole space
between the label and
button, no matter how
wide or narrow the
newsletter box is.

F I G U R E 7. 2 2 In brows-
ers that don’t support
flexible box layout (like
Opera 10.6, shown
here), each element of
the form is on its own
line instead of sitting
side by side.

REALITY CHECK: WHAT WORKS NOW 271

To get the form elements back on one line in browsers that don’t sup-
port flexible box layout, add width: auto to the #form-newsletter
input[type=text] rule, and display: inline to the #form-newsletter
* rule:

#form-newsletter * {
 display: inline;
 margin-right: 3px;
}
#form-newsletter input[type=text] {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
 width: auto;
}

This restores the styles we previously had on these elements for all
browsers, putting the form back on one line in Opera and IE 9. Yes,
we could have left them there all along, but removing them and then
adding them gives you a clearer view of the before and after.

The only problem with setting the form elements to display as inline
elements instead of blocks is that this overrides the flexible box
model, removing the flexibility of the text field. To get it back, keep
display: inline in the #form-newsletter * rule, but add display:
box, plus the browser-specific equivalents, below it:

#form-newsletter * {
 display: inline;
 display: -moz-box;
 display: -o-box;
 display: -webkit-box;
 display: box;
 margin-right: 3px;
}

Setting display to box overrides the earlier inline value, restoring
the flexible box model and the flexibility of the text field. Browsers
that don’t understand the flexible box model won’t understand the
box value for the display property, so they ignore the subsequent
display declarations, and therefore stick with the first one, which sets
the elements to inline.

With these styles, users of browsers that don’t support the flexible
box model see the same layout for the subscription form as shown in
Figure 7.20—the same styles we used in Chapter 6 for everyone—while

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES272

users of browsers that do support the flexible box model see an
enhanced version of the form, as shown in Figure 7.21. Although the
scarcity of browser support may keep you from using the flexible box
model to control the layout of your entire page, there’s no reason why
you can’t use it right now in instances like this as a nice little progres-
sive enhancement technique.

Sticky Footers

Another way you can use flexible layout right now without harm-
ing non-supporting browsers is to create a sticky footer effect. A sticky
footer is the common name for having the footer of a page stick to the
bottom of the viewport when the content isn’t long enough to push it
down (Figure 7.23). This can be accomplished without CSS3, but once
again, it’s more complicated. (See www.cssstickyfooter.com/using-
sticky-footer-code.html for one way to do it, plus links to a number
of other versions.)

F I G U R E 7. 2 3 In the left page, the footer appears at the bottom of the viewport. In the right page, the footer
appears right after the content above it ends.

The key to creating a sticky footer using the flexible box model is to
use box-flex to make the div before the footer flexible. This will make
that div stretch to fill whatever space is left in the viewport after the
height of the other divs has been accounted for. If there’s no extra

N OT E : he completed

page is named form_

final.html in the exercise

files for this chapter.

www.cssstickyfooter.com/usingsticky-footer-code.html
www.cssstickyfooter.com/usingsticky-footer-code.html

REALITY CHECK: WHAT WORKS NOW 273

space—in other words, if the page is already longer than the view-
port—the div before the footer will just be its normal height, and the
footer will appear immediately after it, as usual.

To try this out yourself, open the file sticky-footer_start.html in your
code editor. This is the same page from Chapter 6, but I’ve added a
div named content around the content-main and content-secondary
divs. I’ve also removed a bunch of content to make the page very
short so you can see that the footer currently displays immediately
after the content div, with extra space in the viewport appearing
under the footer (Figure 7.24).

Since we want the entire layout to be at least as tall as the viewport at
all times, we need to first set the body and html elements to stretch
to be as tall as the viewport, even if they don’t contain much content.

F I G U R E 7. 2 4 The footer
displays right after the
content div, not at the
bottom of the viewport.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES274

Create a rule for the html element, setting its height to 100 percent,
and add height: 100% to the existing body rule as well:

html {
 height: 100%;
}
body {
 height: 100%;
 margin: 0;
 padding: 0;
 background: url(images/background.jpg);
 color: #666;

font-family: “Segoe UI”, Segoe, Calibri, Arial,
 ¬ sans-serif;
 font-size: 100%;
 line-height: 1.6;
}

Next, turn the wrapper div into a flexible box using the display
property, and tell it to display its children vertically using the box-
orient property. And set its minimum height to 100 percent, so that
it will always be at least as tall as the viewport:

#wrapper {
display: -moz-box;
display: -o-box;
display: -webkit-box;
display: box;
-moz-box-orient: vertical;
-o-box-orient: vertical;
-webkit-box-orient: vertical;
box-orient: vertical;
min-height: 100%;
margin: 0 6%;

}

This makes the three children divs of the wrapper—named header,
content, and footer—stack vertically. This is already their normal
behavior, so adding these properties doesn’t change the appearance
in any browsers, whether or not they support the flexible box model.
But we have to make the wrapper div into a flexible box in order to
make any of its children flex.

The child div that we want to flex is the content divs, so add a new
rule for it, setting box-flex to 1:

REALITY CHECK: WHAT WORKS NOW 275

#content {
 -moz-box-flex: 1;
 -o-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
}

Now, after the intrinsic height of the header and footer have been
accounted for, whatever extra height is left inside the wrapper div
goes to the content div, so that the combined heights of the three
divs always equals at least the height of the viewport. Thus, the footer
sits at the bottom of the viewport instead of right underneath the
content div (Figure 7.25).

Browsers that don’t support the flexible box model simply ignore this
rule and see the page as it was before (and as almost all pages online
behave): the footer appears right under the content div. Users of
these browsers have no reason to know that they’re seeing something
a little different than others. The sticky footer is just another decora-
tive bonus for users of the most advanced browsers.

F I G U R E 7. 2 5 Now the
footer sits at the bottom
of the viewport, with
any extra space placed
between it and the con-
tent div.

N OT E : The com

page is named sticky-

footer_final.html in the

exercise files for this

chapter.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES276

THE LOWDOWN ON THE FLEXIBLE
BOX L AYOUT MODEL

The Flexible Box Layout module is found at www.w3.org/TR/css3-flexbox.

The flexible box model is a new system of properties for creating layouts

that provides more control over alignment and use of space than the

layout-related properties of CSS 2.1.

To invoke the flexible box model, you set the display property of a wrap-

per element to box, a new value in CSS3. You then control the child blocks

of the flexible box using a series of new properties (shown in Table 7.4).

Other than the examples already given in this chapter, you might want

to use flexible box layout for:

Putting the most important content block first in the HTML but

not placing it visually first in the layout, using box-direction or

box-ordinal-group

Moving a featured blog post or product to the top of the page, even

if it’s not first in the HTML, using box-ordinal-group

Creating a full-width horizontal nav, with each button stretching,

using box-flex

A nav bar where the hovered-over or current item takes up the remain-

ing space to become larger than other links; see www.ie7nomore.com/

fun/flexiblenav.

Image galleries, with different-height thumbnails vertically centered

in each row

Video player controls where a slider takes up the remaining

space after buttons are accounted for; see http://clubajax.org/

css3-layouts-the-flexible-box-model-basics.

Vertically centering a content image next to its descriptive block of text

Most of these examples are not practical to use right now, given the level

of browser support and bugs, but if you’re building an app for a particu-

lar browser, such as Safari on iOS, they may be worth trying now.

TA B L E 7. 3 Flexible box model browser support

IE FIREFOX OPERA SAFARI CHROME

No Partial with -moz- No Partial with -webkit- Partial with -webkit-

www.w3.org/TR/css3-flexbox
www.ie7nomore.com/fun/flexiblenav
www.ie7nomore.com/fun/flexiblenav
http://clubajax.org/css3-layouts-the-flexible-box-model-basics
http://clubajax.org/css3-layouts-the-flexible-box-model-basics

ALTERNATIVES TO THE FLEXIBLE BOX MODEL 277

TA B L E 7. 4 Flexible box model properties

PROPERTY ALLOWS YOU TO:

box-orient Stack the blocks vertically or horizontally

box-direction Reverse the default top-to-bottom or left-to-right stacking order

box-ordinal-group Number the blocks in the order you want them to appear, providing

more control over stacking order than box-direction alone

box-flex Make blocks flex to fill up available space left over after other blocks

have been accounted for

box-flex-group Group flexible blocks using numbers, so that when there’s extra

space, the browser will first adjust the widths of all the blocks in the

first flex group, and then move on to the second if there’s still extra

space, etc.

box-align Control the alignment and placement of blocks along the axis

perpendicular to the one they’re on, including stretching to fill the

available space to create equal-height or equal-width blocks

box-pack Control the alignment and placement of blocks along the same axis

that they’re on

box-lines Let the box wrap its children if they don’t all fit on a single line, simi-

lar to how floats will drop down instead of overflow

Alternatives to the Flexible Box Model
Flexible box layout is not the only new layout tool in CSS3. There are
other layout systems and properties in the works, with varying levels
of browser support. We’ll start with the best-supported, versatile box-
sizing property, and then talk about what we can look forward to.

The box-sizing Property

In the traditional W3C box model of CSS 2.1, the value you declare for
width or height controls the width or height of the content area only,
and then the padding and border are added onto it. This is called the
content-box model, and if you’ve worked with CSS for a while, you’re
probably used to it and don’t really think much about it. But it can be
inconvenient to work with at times, such as when you want to set a
box’s width and padding in different units of measurement from each
other, like percentages for the width and pixels for the padding.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES278

For instance, what if we wanted to give each of the three featured
product boxes in our bakery page a background color and use padding
in pixels to move the content in the boxes away from the edges of the
color? And what if we also wanted to give each box a border in pixels?

To see what would happen in this scenario, open the file box-sizing_
start.html from the exercise files for this chapter. It’s the same
page from Chapter 6, with the media queries removed just to
keep things simple.

Find the existing .feature rule on line 116, about halfway down the
style element in the head of the page. Modify the padding value to
add padding to the sides and bottom of each box:

.feature {
float: left;
width: 30%;
margin: 0 4.5% 0 0;
padding: 130px 15px 5px 15px;
background-repeat: no-repeat;
background-position: top center;

}

Next, add a background color and border:

.feature {
float: left;
width: 30%;
margin: 0 4.5% 0 0;
padding: 130px 15px 5px 15px;
border: 1px dashed #3C9;
background-color: hsla(0,0%,100%,.3);
background-repeat: no-repeat;
background-position: top center;

}

Save your page and view it in a browser. The third box will have
dropped down onto a new line (Figure 7.26). That’s because the total
space each box takes up is 30 percent plus two pixels for the side
borders plus 30 pixels for the side padding. When you add on the
4.5 percent margin on the first and second boxes, the total space
the three boxes take up is now greater than 100 percent. How much
greater than 100 percent we don’t know—it will be different at each
viewport size—but the point is that combining pixels and percentages
makes it impossible to know what width to set each box to in order to
make them all fit.

ALTERNATIVES TO THE FLEXIBLE BOX MODEL 279

To try to fix this, you could decrease the width of each box. Try setting
it to 25 percent instead of 30, and you’ll see that the three boxes now
fit on one line at some window sizes—but on narrower ones, the last
box still drops down (Figure 7.27). Plus, on very wide windows, there’s
an extra gap to the right of the third box. They no longer perfectly fill
up the row at all times.

Instead of changing the width of the boxes, another way to work
around this would be to nest another div inside each feature box and
apply the border and padding to this inner div instead. That way,
each outer box would still take up exactly 30 percent, with the border
and padding nested inside, effectively subtracted from that 30 per-
cent. Nesting a few extra divs in this page wouldn’t be that big a deal,
but in complicated designs, the number of extra divs can really add
up, which increases both your development time and the file size of
the HTML and CSS.

F I G U R E 7. 2 6

The Desserts box has
dropped onto a new
line because the addi-
tion of padding and
borders onto each box
doesn’t leave room for
it above.

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES280

F I G U R E 7. 2 7 Decreasing the width of each individual
box makes all boxes fit across in larger viewports, but
not in narrower ones.

The more efficient, CSS3 way to handle this is to leave the HTML alone
and set the new box-sizing property to border-box instead of the
default content-box. When a box is using the border-box box model,
the browser will subtract the padding and border from the width of
the box instead of adding it (Figure 7.28). You always know that the
total space the box takes up equals the width value you’ve declared.

450 pixels

F I G U R E 7. 2 8

The difference between
content-box and
border-box is whether
the width determines
the size of the content
area or the entire box
from border to border.

ALTERNATIVES TO THE FLEXIBLE BOX MODEL 281

MORE COMPLEX WIDTH CALCUL ATIONS

Another piece of CSS3 that would come in handy in our mixed-units

example page is the calc function. It can be used as a value wherever

length units are allowed, such as with the width and margin prop-

erties, to specify an equation that computes a length. For instance,

on our bakery page, we could set each feature box’s width value to

calc(30% - 32px).

The really cool and powerful thing about calc is that you can use

much more complicated equations than the one I just provided, allow-

ing it to handle much more than box-sizing can. The downside is

that you have to hard-code the values into the equation, so if you later

change padding, for instance, you have to also remember to change it

in the calc function.

Unfortunately, as of this writing, no browser supports calc. The

upcoming Firefox 4 will, along with the min and max functions, but

these functions are not yet in the beta versions that are publicly avail-

able. See http://hacks.mozilla.org/2010/06/css3-calc for more informa-

tion on Firefox’s implementation as well as examples for how to use

calc in general. The official W3C description is at www.w3.org/TR/

css3-values/#calc.

With the width value back at 30%, add the box-sizing property, plus
the -moz- and -webkit- versions, to the .feature rule:

.feature {
float: left;
-moz-box-sizing: border-box;
-webkit-box-sizing: border-box;
box-sizing: border-box;
width: 30%;
margin: 0 4.5% 0 0;
padding: 130px 15px 5px 15px;
border: 1px dashed #3C9;
background-color: hsla(0,0%,100%,.3);
background-repeat: no-repeat;
background-position: top center;

}

http://hacks.mozilla.org/2010/06/css3-calc
www.w3.org/TR/css3-values/#calc
www.w3.org/TR/css3-values/#calc

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES282

The -moz- version is used by Firefox, the -webkit- version by Safari
and Chrome, and the non-prefixed version by Opera and IE 8 and
later. Now the total space each box takes up is still 30 percent, and the
border and padding are inside this width, making the content area of
each box 30 percent minus 32 pixels. This allows all three boxes to fit
on the same line at all times (Figure 7.29).

F I G U R E 7. 2 9 With box-sizing set to border-box, all three boxes fit on the same line at all window sizes.

TA B L E 7. 5 box-sizing browser support

IE FIREFOX OPERA SAFARI CHROME

Yes, 8+ Yes with -moz- Yes Yes with -webkit- Yes with -webkit-

ALTERNATIVES TO THE FLEXIBLE BOX MODEL 283

THE LOWDOWN ON THE box-sizing PROPERT Y

The box-sizing property is part of the Basic User Interface module

found at www.w3.org/TR/css3-ui. It allows you to switch the box model

between content-box, where the padding and border of a box are

added onto its declared width and height, and border-box, where the

padding and border are subtracted from its width and height.

Firefox supports a third value, padding-box, that subtracts the pad-

ding but not the borders from the width and height. It’s not part of the

W3C specification and doesn’t look like it will be added.

The box-sizing property is good for:

Mixing units of measurements within a single box, so that you can

determine what total space it takes up and make room for it along-

side other boxes.

Making a box stretch to 100 percent to fill its parent, while still sport-

ing padding and borders.

WO R K A R O U N D S FO R I E 7 A N D E A R L I E R

IE 7 and earlier versions do not support box-sizing, which, like flex-
ible box layout, produces an effect that's more essential than purely
decorative. Thus, you’ll probably want to provide a workaround.
In our case, the easiest workaround is to set the padding in percent-
ages instead of pixels and reduce the width of each box by the same
amount. Add the following new rule:

.ie6 .feature, .ie7 .feature {
 width: 25.5%;

padding: 130px 2% 5px 2%;
}

This effectively maintains each box at 30 percent wide—two percent
padding on each side plus 25 percent width equals 29.5, which leaves
a little extra wiggle room for those pixel-sized borders. While per-
centage-sized padding may not be ideal, it looks only slightly differ-
ent than pixel-sized padding, and it’s certainly better than having the
third box dropped to a new line!

N OT E : The completed

page is named box-

sizing_final.html in the

exercise files for this

chapter.

www.w3.org/TR/css3-ui

CHAPTER 7: FLEXING YOUR LAYOUT MUSCLES284

An alternative workaround is to put IE into quirks mode, which uses
the same sort of box model as border-box provides. But I wouldn’t
recommend it. For one thing, it’s much harder to put IE 7 into quirks
mode than earlier versions. It basically requires you to use an old
or ill-formed DOCTYPE, which harms all browsers. Plus, once it’s in
quirks mode, you would need to make sure you were using the bor-
der-box model throughout your entire site; otherwise, some boxes
will look correct in IE 7 and earlier and others will look broken.

Your final option for working around the lack of box-sizing support
is to use a script. Dean Edwards’ IE7 script (http://code.google.com/p/
ie7-js) makes box-sizing work in IE, but only if you use the IE8.js or
IE9.js version of the script. The downside to using a script, of course,
is that it doesn’t work if JavaScript is not enabled. Again, the box-
sizing property is more essential to the overall layout and look of
the page, so relying on JavaScript may be a little risky in this case.

Future Layout Systems

Flexible box layout is not the only new layout system in CSS3. There
are currently two other layout systems, called template layout and grid
positioning. Both are in the early stages of development (especially
grid positioning); no browser supports them or plans to do so soon.
However, it’s worth briefly describing each so you can get a glimpse of
what may be coming down the road.

T E M P L AT E L AYO U T

CSS3 template layout (previously called “advanced layout”) allows you
to place content into “slots” in the page layout. You define these slots
with letters placed into a grid, like ASCII art, in the display property.
For instance, here’s what a grid could look like:

body {
 display: “aaa”

 “bcc”;
 “ddd”;

}

Then, you assign divs to sit in each of those lettered slots, like so:

#header { position: a; }
#content { position: b; }
#sidebar { position: c; }
#footer { position: d; }

http://code.google.com/p/ie7-js
http://code.google.com/p/ie7-js

ALTERNATIVES TO THE FLEXIBLE BOX MODEL 285

It can get a lot more complicated than this, of course—we haven’t
assigned widths to any of the slots, heights to any of the rows, or gaps
between elements, for instance. But the point is that you can move
any div placed anywhere in the HTML to any spot visually on the
page, and you can easily make elements span multiple columns. Some
people love this flexibility and simplicity; others passionately hate the
whole idea behind CSS3 template layout.

Either way, you can learn more about it at www.w3.org/TR/css3-layout.
If you want to play around with it now, Alexis Deveria has made a
jQuery plugin to make it work using JavaScript; see http://code.google.
com/p/css-template-layout.

G R I D P O S I T I O N I N G

CSS3 grid positioning also allows you to create grids, naturally, but
not with a series of letters. Instead, you use the grid-columns and
grid-rows properties to explicitly declare a grid. You still use floating
or absolute positioning to move the elements around the page, but
you can place them in relation to the grid you’ve created using the
new gr unit, a grid unit equal to the width of one of your columns, as
well as the new float-offset property.

The first draft of the grid-positioning module (www.w3.org/TR/
css3-grid) came out in September 2007, and it hasn’t been updated
since then, so its status is not very clear. The W3C may consolidate the
template and grid modules together, partially or completely. Even if
they don’t consolidate them, it remains to be seen if or how they can
be used together, as well as how they interact with flexible box layout.
It’s all pretty murky right now.

www.w3.org/TR/css3-layout
http://code.google.com/p/css-template-layout
http://code.google.com/p/css-template-layout
www.w3.org/TR/css3-grid
www.w3.org/TR/css3-grid

This page intentionally left blank

A
Browser
Support
The following table repeats all the browser support information

given throughout the chapters for the covered CSS3 properties,

selectors, and functionality. In a few cases, there were notes

provided alongside the original tables to provide supplemental

information; those notes have been removed from this appendix.

APPENDIX A: BROWSER SUPPORT288

TA B L E A .1 Browser support for CSS3 properties, selectors, and functionality

CSS3 FUNCTIONALITY COVERED IN
CHAPTER

IE FIREFOX OPERA SAFARI CHROME

@font-face 3 Yes Yes, 3.5+ Yes, 10+ Yes Yes

:nth-child() 5 Yes, 9+ Yes, 3.5+ Yes Yes Yes

:nth-of-type() 5 Yes, 9+ Yes, 3.5+ Yes Yes Yes

:target 5 Yes, 9+ Yes Partial Yes Yes

2D transforms 2 No Yes with -moz-,

3.5+

Yes with -o-,

10.5+

Yes with -webkit- Yes with -webkit-

3D transforms 2 No No No Yes with -webkit-,

5+

No

animation 5 No No No Yes with -webkit- Yes with -webkit-

Attribute selectors 4 Yes, 7+ Yes Yes Yes Yes

background-clip 3 Yes, 9+ Yes, 4+; Partial,

1+, with -moz-

Yes Yes, 3+,

with -webkit-;

Partial, 5+

Yes

background-size Yes, 9+ Yes, 4+; 3.6

with -moz-

Yes Yes, 5+; 3+ with

-webkit-

Yes

border-image 3 No Partial with

-moz-, 3.5+

Partial, 10.5+ Partial with

-webkit-

Partial

border-radius 2 Yes, 9+ Yes with -moz- Yes Yes, 5+; 4+ with

-webkit-

Yes

box-shadow 2 Partial, 9+ Yes with -moz-,

3.5+

Yes, 10.5+ Yes with -webkit- Yes with -webkit-

box-sizing 7 Yes, 8+ Yes with -moz- Yes Yes with -webkit- Yes with -webkit-

Flexible box model 7 No Partial with

-moz-

No Partial with

-webkit-

Partial with

-webkit-

Gradients 2 No Yes, 3.6+, with

-moz-

No Yes, with -webkit- Yes, with -webkit-

Media queries 6 Partial, 9+ Partial, 3.5+ Partial Partial Partial

Multi-columns 6 No Partial No Partial Partial

Multiple background

images

3 Yes, 9+ Yes, 3.6+ Yes, 10.5+ Yes Yes

RGBA/HSLA 2 Yes, 9+ Yes Yes Yes Yes

text-shadow 2 No Yes Yes Yes Yes

transition 5 No Yes with

-moz-, 4+

Yes with -o-,

10.5+

Yes with -webkit- Yes with -webkit-

word-wrap 2 Yes, 5.5+ Yes, 3.5+ Yes Yes Yes

CONCLUSION 289

Conclusion

Thanks for sticking with me on this journey through engaging
visual effects, attractive typography, powerful selectors, and effec-
tive usability enhancements. You’ve learned how to make pages that
offer as rich and enjoyable an experience as possible to all your visi-
tors, while using efficient, cutting-edge, and standards-compliant
CSS techniques.

I hope that you’ll use the new techniques you’ve learned to experi-
ment, have fun, and improve your work. As I’ve said before, CSS3 is
still evolving and we web designers are still learning how to use it to
its full extent. When you create something cool with it, please share!
Email me through the form on www.stunningcss3.com, or share
with the web design community on Twitter using the hash tag
#stunningcss3. Let’s all learn from each other how we can make the
web more stunning.

www.stunningcss3.com

This page intentionally left blank

INDEX 291

Index

:: (double colons), 57
(pound sign), 181
: (single colon), 57
 , 57
* attribute selector, 164
2D transforms, 35, 90, 91
3D buttons, 84
3D cubes, 91
3D transforms, 90, 91
37signals, 191

A
absolute positioning, 60
accessibility, 19, 92, 143
access keys, 163
Acrobat Reader, 153
::after pseudo-element,

57, 169
alistapart.com articles

font embedding, 128, 131
mobile style sheets, 240
Modernizr, 34
prefix or posthack, 26, 27
supersizing background

images, 108
zebra striping, 172

Alpha filter, 35
alpha transparency, 62
alpha-transparent PNGs,

62, 69–70, 79
alt attribute, 151
alternating colors, 171–176
alternative text, 163
ancestor elements, 169
Android, 25, 226, 235, 236
angled elements, 91, 92
animatable properties, 196
animated GIFs, 204
animation property, 200, 202
animations, 3, 96, 191–204
anti-aliasing, 132, 133, 143
Ascender, 131
Ates�, Faruk, 34
attribute presence and value

selectors, 152, 162
attribute selectors

adding file-type indicators
with, 153–156

assigning classes to, 160, 161
browser support, 163
combining multiple, 157
combining with other

selectors, 151
exercise files, 153, 155,

158, 165
finished page, 165–166
for “not matching”, 153
purpose of, 151
quotation marks in, 154
styling photos with, 160–165
targeting image types with,

164–165
types of, 152, 163
values in, 162
ways of using, 162–163
workarounds for IE 6,

157–158, 161
avatars, 89, 92–96

B
Babé, Louis-Rémi, 125
background

changing color of, 188–191
fading color in/out, 191–204
images (See background

images)
semitransparent, 31, 62–72

background-clip property,
35, 120–125

background images
applying multiple, 109–114
filling entire page with, 108
scaling, 101–107, 108
for spiral-notebook effect,

114–125
tiling, 62, 103, 108

background-origin property,
35

background-position property,
21

background-repeat property,
103, 115

Backgrounds and Borders
module, 53, 84, 108, 112,
117, 122

background shorthand property,
69, 110, 111, 121, 196

background-size property,
101–108

browser support, 104, 108, 111

how it works, 101–103
purpose of, 101
vs. background-repeat

property, 103
ways of using, 108, 156
workarounds for IE, 107

backslash, 58
Bakaus, Paul, 96
bakery site

base page for, 206–207
finished page for, 241–242
large-screen layout, 209–219
mobile-device layout,

226–240
small-screen layout, 220–225

bar charts, 53
Basecamp, 191
BasicImage filter, 35
Basic User Interface module,

283
::before pseudo-element,

57, 59, 169
Bester, Michael, 71
Bil’ak, Peter, 133
blocks, aligning, 3
blog comments, 47, 48–49

See also speech bubbles
Blur filter, 35, 85
bold font, 141
border-box value, 122, 123, 280,

283
border-image generator, 119
borderImage plugin, 125
border-image property, 115–120
border images, 115, 116, 121, 125
border-radius property,

22, 23, 35, 52–54, 89, 186
borders

creating triangles out of,
55–56

flowing across columns, 217
simulating, 84

bosses, dealing with
unsupportive, 41–45

box-align property, 258–260,
261, 263, 277

box-direction property,
255–258, 277

boxes
angled, 91, 92
disappearing, 264

INDEX292

boxes (continued)
flexible, 112, 246

See also flexible box
layout model

skewed, 91
stretching, 283
transforming, 2

See also transforms
wrapping children of, 265

box-flex-group property, 277
box-flex property, 248–252,

272–275, 277
box-lines property, 265, 277
box model, 244, 277
box-ordinal-group property,

256–257, 277
box-orient property, 277
box-pack property, 261, 265,

266, 277
box-shadow generator, 83
box-shadow property

adding drop shadow with,
81–85

benefits of using, 16
browser support, 84, 164
declaring color in, 82
emulating, 35
ways of using, 84
workarounds for IE, 85

box-sizing property, 9, 280,
282–283

break-word value, 49
Brown, Nora, 119
browser-based color pickers, 64
browser prefixes, 25–30
browsers. See also specific

browsers
and animations, 192, 202
and attribute selectors, 163
and background-clip

property, 122, 123,
124–125

and background-repeat
property, 115

and background-size
property, 104, 108, 111

and border-image property,
118

and border-radius property,
54

and box-shadow property,
84

and box-sizing property,
282

and calc function, 281
and CSS3, 8–11
designing in, 43–45
and flexible box layout model,

276
and @font-face rules,

9, 135, 139, 142
and font rendering, 133
and generated content, 187
and gradients, 77
market share, 7–8
and media queries, 212
mobile, 236
and multi-column layouts,

218, 219
and multiple background

images, 113
and :nth-child()

pseudo-class, 174
and :nth-of-type()

pseudo-class, 179
providing workarounds for

older, 11–14, 24, 30–41
and RGBA/HSLA, 67
and :target pseudo-class,

190, 191
and text-shadow

property, 88
and transforms, 91
and transitions, 192, 198
and word-wrap

property, 49–50
browser sniffing, 33
bulleted lists, 163
Bulletproof Smiley syntax,

138–141
buttons, 53, 84, 113, 192

C
calc function, 281
Camino, 25
Campaign Monitor, 10
Candidate Recommendation

status, 5, 25
canvas element, 114
cards, folding, 91
Casciano, Chris, 85
centering, 261–266, 268
Chao, Ingo, 71
child elements, 169

Chrome. See also browsers
and anti-aliasing, 92
and background-size

property, 104, 111
and border-image property,

120
and box-shadow property,

164
browser prefix, 25
CSS3 support, 8–9
and drop shadows, 126
and float property, 264
and @font-face rules, 135
and local() syntax, 140
market share, 7
and round value, 126
and spread radius, 164

circles, 52
circular badges, 53
citations, 163
Clark, Keith, 34, 159
Clarke, Andy, 44, 218
classes, 160–161
ClearType, 132
clients, dealing with

unsupportive, 41–45
CMS, 154, 160
Code Converter, Unicode, 57
colons, single vs. double, 57
color converter tools, 64
Color module, 67
color picker tools, 63–64
colors, alternating, 171–176
Colors app, 63
column-count property,

214–215, 219
column-gap property, 215, 219
Columnizer plugin, 218
columns. See also multi-column

layouts
adding, 253–255
breaking text into, 214–215
creating equal-height,

258–260
problems with, 217–218
reordering, 255–258

Column script, 218
column-width property,

214, 219
comments, 30. See also blog

comments; conditional
comments

comps, 43–45

INDEX 293

conditional comments,
36–41, 55

content
breaking across columns,

217
CSS-generated, 56–57, 61,

156, 184
overflowing, 217

content-box model, 277
content-box value, 122, 280,

283
content management system,

154. See also CMS
Converter, Unicode Code, 57
counters, 184–186
Coyier, Chris, 185
CSS. See also specific versions

browser prefixes, 25–30
properties. See properties
pseudo-elements, 169
putting comments in, 30
sprites. 21, 22, 185
transforming objects with.

89
vs. other technologies. 17

CSS 2, 127
CSS 2.1

attribute selectors, 152, 162
box model, 244, 277
CSS3 as extension of, 2
and @font-face rules, 127
and generated content,

56–57
layout tools, 243

CSS3
attribute selectors, 152, 162
benefits of, 15–19
best practices, 25–41
browser support, 7, 8–11, 30
case study, 19–24
creating speech bubbles with,

47–48
declaring color in, 31
detecting support for,

32–34
emulating, 34–35
and @font-face rules, 127
gradients. See gradients
layout tools, 243, 277, 284–285

See also layouts
managing expectations about,

43–45
as marketable career skill, 19

maturity levels, 4–6
modules, 2, 4
new features, 2–3
and non-supporting

browsers, 30–41
and readability, 19
recommendations on using,

5–6, 25–41
RGBA/HSLA syntax, 62–64
strategies for gaining

acceptance of, 39–45
structural pseudo-classes,

169–171
styling images/links with,

149–166
transforms. See transforms

CSS-generated content, 56–57, 61
CSS Infos, 10
cssSandpaper script, 34, 96
Cuadra, Jimmy, 192
cursive font, 137
“curved corner” script, 54

D
“DD_roundies” script, 55
Decker, Kevin, 119
degradation, graceful, 12, 15
descendants, 169
Designing with Progressive

Enhancement, 11, 15
design mockups, 43–45
Deveria, Alexis, 285
device width, 227
dialog boxes, 53
digital rights management, 134
Diller, Drew, 55
dingbat fonts, 143
DirectWrite, 133
disappearing boxes, 264
display property, 246, 284
document object model, 170
document tree, 169–170
DOM, 170
DOMAssistant, 176
Dorward, David, 191
double colons, 57
Doughnut Color Picker, 64
DRM, 134
DropShadow filter, 35, 85, 89
drop shadows, 81–85, 125–126
dynamic highlighting, 180–181

E
eCSStender, 27
Edwards, Dean, 34, 157, 176, 284
elliptical corners, 52
email

links, 163
newsletters, 10
sign-up form, 268–272

:empty pseudo-class, 170
ems, 104, 105
Enders, Jessica, 172
end-user licensing agreements,

128–129
EOTFAST, 136, 137
EOT font files, 134, 135, 136
equal-height columns, 258–260
escape character, 58
EULAs, 128–129
exercise files

attribute selectors, 153, 155,
158, 165

box-sizing property, 283
flexible box layout model,

245, 265, 283
media queries, 209, 224, 241
notebook paper, 104
speech bubbles, 49, 61, 70, 81,

87, 96
sticky footers, 275
:target pseudo-class, 189
zebra striping, 172

exljbris, 129–130
Expires header, 145
“explorer-canvas” script, 114

F
fade-out animation, 198–204
Fadeyev, Dmitry, 133
famfamfam icons, 155
faux columns. See equal-height

columns
Fetchak, Nick, 55
FHOS, 130
file folders, 100
file-type indicators, 154
file types, styling links for

specific, 153–159
fill keyword, 116
filter property, 35, 94
filters IE, 35–36
FindMeByIP, 10
Fink, Richard, 128, 133

INDEX294

Firefox. See also browsers
and anti-aliasing, 143
and background-clip

property, 122
and background-size

property, 104, 111
and border-radius property,

89
browser prefix, 25
and calc function, 281
CSS3 support, 9
and @font-face rules,

135, 144
and gradients, 73
market share, 7
and multiple background

images, 113–114
Rainbow extension, 64
and transitions, 192
and W3C syntax, 73–74
Web Developer extension,

238
:first-child pseudo-class,

169, 170, 171
::first-letter pseudo-

element, 169
::first-line pseudo-element,

169
:first-of-type pseudo-class

170
Fisher, Meagan, 44
Flash, 194
Flash of Unstyled Text, 144
flexible boxes, 112, 246
flexible box layout model

adding columns with,
253–255

alternatives to, 277–285
browser support, 247, 266–

268, 276
creating equal-height

columns with,
258–260

creating layouts with,
245–266

disadvantages of, 246
exercise files, 245, 257, 265
laying out forms with,

268–272
properties, 277
purpose of, 244, 276
reordering columns with,

255–258

and sticky footers, 272–275
vertical/horizontal centering

with, 261–266
ways of using, 268, 276
and wrapping of box’s

children, 265
Flexible Box Layout module,

3, 276
Flexible Web Design, 207, 214
floats, 217, 229, 245, 264, 265
Flock, 25
fluid layouts, 206
folding cards, 91
Fontdeck, 131
Font Directory, Google, 129, 145
font embedding, 127, 129
font-embedding services,

130–131, 145
FontExplorer X, 140
Fontfabric, 129–130
@font-face Kit Generator,

135–136, 137
@font-face rules

accessing fonts in, 143
adding to CSS, 141
browser support, 9, 134–135,

142
and font licenses, 128–129
linking to fonts with, 138–141
performance issues, 17–18,

144–145
purpose of, 3, 127, 143
syntax variations, 138
ways of using, 143
and Webkit-based browsers,

144
font-family descriptor, 127,

141, 143
font-generator tool, 135–136,

137, 144
Fonthead, 130
font hinting, 132, 133
font hosting, 130, 145
font-loading lags, 144
Font module, 143
font-replacement techniques,

127, 129
fonts. See also text

and anti-aliasing, 132, 133,
142

choosing acceptable, 128–134
compressing, 145
converting, 135–136

declaring, 141–145
embedding, 127
gzipping, 145
hosting of, 130, 145
licensing issues, 128–129
linking to, 127, 134, 138–141
for non-Western languages,

144
performance issues, 144–145
readability issues, 132–134
rendering issues, 132, 133
security issues, 128
sources of free, 129–130
testing, 132
web, 127, 128, 132
web-safe, 127

Fonts.com Web Fonts, 131
FontShop, 130
font-size-adjust property,

132
FontsLive, 131
Fonts module, 3
font smoothing, 133
font-smoothing property, 133
FontSpring, 130
Font Squirrel, 129, 135–136, 137,

144
font stacks, 127
footers, sticky, 272–275
form fields, 162
form layouts, 268–272
FOUT, 144, 145
“Fragment Highlight” script, 191
fragment identifiers, 181–182
Franquet, Alix, 75

G
Gallagher, Nicolas, 114
Gasston, Peter, 75, 79
generated content, 56–57, 61,

156, 184
Giannattasio, Thomas, 133
GIFs, animated, 204
Glow filter, 35, 85, 89
Google

downloading IE7 script from,
157

“explorer-canvas” script, 114
Font Directory, 129, 145
and page-loading speed, 18
WebFont Loader JavaScript

library, 145

INDEX 295

graceful degradation, 12, 15
Gradient filter, 35, 70, 71, 81
gradient-generator tools, 78, 112
gradients

browser support, 77
image-free, 72–81
linear, 35, 72–73, 76–77
radial, 72–73, 75
simulating, 84
using prefixed versions of, 29
ways of using, 77
workarounds, 78–81

graphic effects, 51
graphics programs, 44
grid positioning, 3, 285
Griffiths, Patrick, 191
Gzip, 145

H
h2:target selector, 188–189
hacks, 36
handheld media type, 240
handwritten font, 126, 137, 142,

144, 147
hash mark, 181
hasLayout, 71
Hawryluk, Zoltan, 34, 93, 96
Hazaël-Massieux, Dominique,

240
headings

fading in/out, 191–204
targeting, 188–189

hex color values, 63
highlighting, dynamic, 180–181
Highway Safety Research Center,

19–24
hinting, font, 132, 133
horizontal centering, 261,

263–266
horizontal nav bars, 213–214
href attribute, 155, 158
HSB values, 63
HSLA

browser support, 67
converting to Gradient filter,

71
emulating, 35
hue values cheat sheet, 65
meaning of acronym, 62
semitransparent backgrounds

with, 31, 62–72
syntax, 62–64

vs. RGBA, 65–67
ways of using, 67
workarounds for IE, 69–72

HSL color picker, 63
HSL values, 63, 64, 65
HSV values, 63
.htaccess, 145
HTML

adding classes to, 160
comments, 36–37
hierarchical structure, 169
targeting, 3, 16, 149, 168–180

html tag, 39–41
“HTTP Caching” article, 145
HTTP requests, 16–18, 21, 38

I
Icon Eden, 223
icons

creating number, 184–187
indicating file types with,

153–159
resizing, 231
scaling, 156
using dingbat fonts to create,

143
IE. See also specific versions

and animation property, 202
and attribute selectors, 163
and background-clip

property, 123
and background-size

property, 107, 108
and border-image

property, 118
and border-radius

property, 54
and box-shadow

property, 84–85
and box-sizing

property, 283–284
browser prefix, 25
CSS3 support, 9
feeding rules/scripts to, 36
filtering with conditional

comments, 36–41
filters, 35–36, 70, 71, 81, 93, 96
and flexible box layout model,

276
and @font-face rules, 9, 134,

135, 141, 142
and generated content, 61

and gradients, 77
hacks, 36
hiding content from, 38–39,

55
market share, 7–8
and media queries, 212
and multi-columns, 219
and multiple background

images, 113–114
and :nth-child()

pseudo-class, 174, 176
and :nth-of-type()

pseudo-class, 179
and RGBA/HSLA, 67, 69
and rounded corners,

24, 54–55
and :target pseudo-class,

190
and text-shadow property,

88, 89
and transforms, 91, 92–96
and transition property,

198
and word-wrap property, 49

IE 5, 8, 49
IE 6, 7–8, 9, 157–158, 161, 163
IE 7, 7–8, 9, 61, 163, 283–284
IE7 script, 34, 157–158, 176, 284
IE 8. See also IE

and background-size
property, 107

and box-shadow property, 85
and conditional comments,

38
CSS3 support, 9
and @font-face rules,

139, 141
and HSLA/RGBA, 69–72
market share, 7
and multiple background

images, 113–114
and :nth-child()

pseudo-class, 176
and rounded corners, 54–55

IE 9. See also IE
and anti-aliasing, 143
and background-repeat

property, 103, 115
and background-size

property, 104, 111
and border-radius property,

186
CSS3 support, 9

INDEX296

IE 9 (continued)
and flexible box layout model,

247
and @font-face rules, 141
and :nth-child()

pseudo-class, 176
and :nth-of-type()

pseudo-class, 179
and web font rendering, 133

IE-CSS3 script, 55, 85
IE-only style sheets, 37
image-free gradients, 72–81
image-free text shadows, 85–89
image-free visual effects, 2
image galleries, 91, 190, 276
images

angled, 91
assigning to borders, 115
background. See background

images
border. See border images
displaying alternative text for,

163
positioning, 120–125
repeating, 118
revealing portions of, 112
rounding, 118
scaling, 101–107
slicing, 116, 117
stretching, 112, 118
styling, 149, 150, 151, 160–165
targeting by type, 164–165

image slideshows, 91
image tabs, 22
img[alt] selector, 151–152
Internet Explorer. See IE
intrinsic sizing, 248
invisible content, 57
iPad, 227, 239
iPhone, 108, 226, 227, 233–234,

235, 239
iPod Touch, 227, 233, 239
Irish, Paul, 39, 139, 141, 144, 145
italic font, 141

J
Jaeger, Jason J. 218
James, Mark 155
JavaScript

and box-sizing property,
284

dynamic highlighting with,
181

emulating CSS3 with, 34–35
for fading background color,

191–192
libraries, 145, 159, 176
and media queries, 241
and :nth-child()

pseudo-class, 176
and :target pseudo-class,

190, 191, 204
and template layout, 285

Johanssen, Roger, 218
Johnston, Jason, 35, 54, 125
jQuery, 159, 176, 241, 285
Just Another Foundry, 131

K
Kernest, 129, 131
@keyframes rule, 199
KHTML, 25
Koch, Peter-Paul, 235, 236
Konqueror, 25

L
Lamm, Steve, 145
Last Call status, 5
:last-child pseudo-class,

170, 183–184
:last-of-type pseudo-class,

170
Lawson, Bruce, 191
layouts

for large screens, 209–219
liquid, 206–207
for mobile devices, 226–240
multi-column, 3, 245–266
for small screens, 220–225

layout viewports, 235–236
Lazaris, Louis, 39, 185
League of Moveable Type, 129
left value, 60
licensing agreements, font,

128–129
linear gradients, 35, 72–73, 76–77
line breaks, 73
lined-paper background

image, 100
line length, 214
links. See also URLs

checking for empty, 163
displaying access key for,

163

styling, 149, 150, 151,
153–156, 163

liquid layouts, 206
lists, 184
Little Pea Bakery, 206

See also bakery site
local() syntax, 140–141

M
Mac

color picker, 63
font considerations, 132

Manion, Divya, 134
margins, 217
Matrix filter, 93, 96
maturity levels, CSS3 module,

4–5
mb.js script, 114
media features, 208, 212, 227
media queries

exercise files, 209, 224, 241
improving usability with, 19
for large-screen layouts,

209–219
for mobile-device layouts,

226–240
purpose of, 3, 208–209
for small-screen layouts,

220–225
testing, 238
ways of using, 209, 212
workarounds, 240–241

Media Queries module, 3
@media rule, 212
menus, vertical, 213–214
meta tag, 235–240
Meyer, Eric, 27–28
Microsoft

ClearType, 132
DirectWrite, 133
filters, 35–36
Internet Explorer. See IE
and word-wrap property, 49

min-height attribute, 154, 156
mobile browsers, 236
mobile devices, 207, 209,

226–240
Mobile Safari, 227, 236, 239
mobile viewports, 236
mockups, 43–45
Modernizr, 32–34, 55, 107, 113,

203, 266

INDEX 297

MooColumns, 218
MooTools, 89, 153, 159, 176
Moveable Type, League of, 129
Mozilla, 10, 25. See also Firefox
-ms-filter property, 94, 95
multicol elements, 215
Multi-column Layout module,

3, 219
multi-column layouts

adding columns to, 253–255
browser support, 219
creating, 245–252
equal-height columns in,

258–260
horizontal centering in,

263–266
and line length, 214
problems with, 217–218
reordering columns in,

255–258
vertical centering in,

261–263
workarounds for

non-supporting
browsers, 218–219

Multi-column script, 218
multi-column text, 214–219. See

also multi-column layouts
multi-row layouts, 245

N
nav bars, 213–214, 263–266, 276
nested divs, 109, 111, 113, 246
Net Applications, 7
newspaper layouts, 3
Nintendo, 25
nodes, 169
non-breaking space, 57–59
notebook paper, 99–147

adding drop shadow to,
125–126

adding graphic border to,
114–125

adding stain images to,
109–111

aligning text to lines in, 101
applying multiple background

images to, 109–114
base page for, 100
embedding fonts in, 126–145
exercise files, 104, 111
finished page for, 146–147

scaling background image for,
101–108

“not matching” selector, 153
:not selector, 153
:nth-child() pseudo-class

how it works, 170, 171–172
negative values in, 175
online tools, 172
rotating photos with, 176–180
ways of using, 168, 175
workarounds for IE, 176
zebra striping with, 172–176

:nth-last-child()
pseudo-class, 168, 170

:nth-last-of-type()
pseudo-class, 168

:nth-of-type() pseudo-class,
168, 170, 179

number icons, 184–187
number sign, 181
Nyman, Robert, 71

O
Obsidian Dawn, 110
octothorps, 181
ol element, 184
online color tools, 64
:only-child pseudo-class, 170
:only-of-type

pseudo-class, 170
opacity property, 63
OpenType, 132, 134
Opera. See also browsers

and background-repeat
property, 103, 115

and background-size
property, 104, 106, 111

and border-image property,
120

browser prefix, 25
CSS3 support, 9, 10
and @font-face rules, 135
market share, 7
and multiple background

images, 113–114
navigation div bug, 210
and transitions, 192

Opera Mobile, 135
ordered lists, 184
OTF font files, 132, 134–135
overflows, 217, 264, 265
overlapping elements, 232–233

P
padding, 217
padding-box value, 122, 123, 283
page performance, 16–18, 21
pagination, 217
parallax effect, 112
parent elements, 169
Patenaude, Matt, 63
PDF files, 153, 156
Phinney, Thomas, 133
photos. See also images

angled, 91
rotating, 176–180
styling full-size vs. thumbnails,

160–165
Photoshop, 63
photo slideshows, 91
PIE script, 25, 35, 54, 70, 80, 85
Pinckaers, Hans, 114
pixel-based measurements,

105
PNGs, alpha-transparent,

62, 69–70, 79
Polaroid-style photos, 164–165
pound sign, 181
prefixes, browser, 25–30
Prelude font, 137, 141–142
presentational-behavior effects,

192–193
Presto, 25
progressive enhancement,

11–15, 40–41
properties. See also specific

properties
animatable, 196
browser-specific prefixes for,

25
properties

flexible box layout model,
277

providing more than one
value for, 32

using browser-specific, 28–30
Proposed Recommendation

status, 5
ProtoFluid, 238
pseudo-classes, 168–171
pseudo-elements, 57, 168, 169

Q
QuirksMode, 10
quotation marks, 112, 154

INDEX298

R
radial gradients, 72–73, 75, 76
Rahnas, Remiz, 54
Rainbow Firefox extension,

64, 65
Raleway font, 127, 129, 132
readability, 19, 86, 89, 92,

132–134
Recommendation status, 5
rendering engines, 25, 30
repeat value, 118
retina display, 233
RGBA

browser support, 67
converting to Gradient filter,

71
emulating, 35
meaning of acronym, 62
semitransparent backgrounds

with, 31, 62–72
syntax, 62–64
vs. HSLA, 65–67
ways of using, 67
workarounds for IE, 69–72

RGB values, 63, 64
Roberts, Harry, 179
:root pseudo-class, 170
rotate transform function,

90, 93
rotation, random, 176–180
rounded corners, 51–55
round value, 118, 126
Ruter, Weston, 80
Rutter, Richard 218

S
Safari. See also browsers

and background-clip
property, 122

and background-size
property, 104, 111

and border-image property,
120

and box-shadow property,
164

browser prefix, 25
CSS3 support, 8–9, 10
and drop shadows, 126
and float property, 264
and @font-face rules, 135
and local() syntax, 140
market share, 7

and round value, 126
and spread radius, 164

Safari on iOS, 135
Sass, 27
Savarese, Cédric, 218
scale transform function, 90
scaling

background images, 101–107,
108

border images, 115
icons, 156

screen sizes
accommodating different,

205, 206–207
targeting specific, 226

scripts
for attribute selectors,

157–158, 159
for box-sizing property,

284
CSS3 emulation, 34–35
for media queries, 241
for multi-column text, 218
for rounded corners, 54–55
for stretching border images,

125
for :target pseudo-class,

191, 204
for zebra striping, 176

search engine placement, 18
Selectivizr, 34, 159
SelectORacle, 152
selectors, 3, 149, 159, 167.

See also attribute selectors
Selectors module, 3, 162, 175,

179, 190
Selector Utility, YUI, 159
semitransparent backgrounds,

31, 62–72, 82
Shadow filter, 35, 85, 89
shadows

drop, 81–85
text, 85–89

sibling elements, 169
sideways text, 91
Silk icon set, 155
Simons, Randy, 218
Sizzle, 159
skewed boxes, 91
skew transform function, 90
slideshows, 91, 190
Sly, 159

smartphones, 235.
See also specific devices

smiley faces, 53
Soma Fontfriend, 132
space value, 118
special character code, 58
speech bubbles, 47–97

adding alternating colors to,
171–176

adding drop shadows behind,
81–85

adding tails to, 55–61
applying gradients to, 72–81
base page for, 48–49
creating semitransparent

backgrounds for, 68–72
exercise files, 49, 61, 70, 81,

87, 96
finished page for, 96–97
increasing 3D appearance of,

83
making text stand out in,

86–89
rotating photos in, 176–180
rounding corners of, 51–55
transforming avatars for,

89–96
wrapping text in, 49–51

spiral notebook-paper effect,
114–116

Spolsky, Joel, 133
spread radius, 164
sprites, 21, 22, 185
src attribute, 164
stability status, CSS3, 4
stain images, 109–111
Standardista, 10
star html hack, 36
Stefanov, Stoyan, 145
sticky footers, 272–275
sticky notes, 100
Storey, David, 185
stretch value, 258, 259, 260
structural pseudo-classes,

169–171
stunningcss3.com

CSS3 emulation scripts, 35
flex-box exercise files, 245
font-embedding resources,

131
media queries exercise files,

209

INDEX 299

notebook paper exercise files,
104

selectors exercise files, 153
speech bubbles exercise files,

49
web font resources, 130, 135
zebra striping exercise files,

172
style sheets, 37, 163, 212
styling

numbers, 186
table of contents, 183–184
type-based, 151

subscription form, 268–272
substring matching attribute

selectors, 152, 162
“Suckerfish :target” script, 191
SuperSelectors plugin, 159
SVG fonts, 134, 135, 136
Swan, Elliot, 193

T
table of contents, 182–187, 204
tabs, 53
tag clouds, 91
tails, speech bubble, 55–61
targeting HTML elements,

3, 16, 149, 168–180.
See also selectors

:target pseudo-class, 181–182,
188–191, 204

template layout, 284–285
Template Layout module, 3
text. See also fonts

displaying alternative, 163
multi-column, 214–219
real vs. images of, 19
sideways, 91
wrapping, 9, 49–51

Text module, 88
text-shadow generator, 87
text-shadow property, 35,

85–89
text-shadow script, 89
text-wrap property, 50
thumbnails, 160–165
thumbtack image, 110
title attribute, 163
TOC, 182–187, 204
top value, 60
torn-edge effect, 114–125, 147

transform functions, 89, 90
Transformie script, 96
transform-origin property,

90, 92
transform property, 92
transforms

benefits of using, 92
browser support, 91
defined, 89
purpose of, 2
rotating avatars with, 92–93
scripting changes in, 96
syntax for, 92
using multiple, 90
ways of using, 91
workarounds for IE, 92–96

transforms generator, 92
Transforms Translator, 93, 94
transition property, 194–198
transitions, 3, 192–204
Transitions module, 197
translate transform function,

90
transparency, 62.

See also semitransparent
backgrounds

triangles, 55–56
Trident, 25
TrueType, 132, 134–135
ttf2svg, 136
TTF fonts, 132, 134–135
Twitter, 31
type-based styling, 151
type delivery services, 130–131
TypeFront, 128, 129
Typekit, 130
typography, 3. See also fonts
Typotheque, 131, 133

U
ul element, 184
UNC Highway Safety Research

Center, 19–24
Unicode Code Converter, 57
Unicode code points, 58
unordered lists, 184
URLs, 49, 163, 181–182.

See also links
usability, 19, 92, 172, 218
user style sheets, 163

V
Van Damme, Tim, 133
van der Graaf, Wouter, 241
van Ouwerkerk, Michael, 218
vendor prefixes, 25–26
Verou, Lea, 172
vertical centering, 261–263
vertical menus, 213–214
viewport meta tag, 235–240
virtual viewports, 235
visual effects, 2
visual viewports, 235

W
W3C

and attribute selectors, 152
box model, 277
and CSS3 maturity levels,

4–5
and Firefox, 73
and WOFF specification,

134, 135
water stain images, 110
Webb, Dan, 191
web-based color tools , 64
web browsers. See browsers
Web Developer extension,

Firefox, 238
Web FontFonts, 130
WebFont Loader JavaScript

library, 145
web fonts, 127, 128, 132.

See also fonts
Web Fonts from Ascender, 131
Webfonts.info, 129
WebINK, 131
Webkit

and anti-aliasing, 133
and background-clip

property, 122
browser prefix, 25
and @font-face rules, 144
and font smoothing, 133
and gradients, 73
linear gradient syntax, 75, 79
and long URLs, 49
and transitions, 192

Web Open Font Format, 134–135

INDEX300

web pages
choosing fonts for, 128–134
hiding ads on, 163
highlighting sections

of, 180–204
how people view, 205
improving search engine

placement for, 18
progressive enhancement of,

11
speeding up, 16, 21

web-safe fonts, 127
Webtype, 131
Wii, 25

Wikipedia, 7, 10, 180–182
Windows fonts, 132
wireframes, 44
WOFF files, 134–135, 139, 145
word-wrap property, 9, 49–50
Working Draft status, 5
Wroblewski, Luke, 234
Wulf, Adam, 218

X
XHTML Character Entity

Reference, 58

Y
Yahoo, 159
Yellow Fade Technique, 191–192,

204
YUI Selector Utility, 159
Yummy icon set, 223

Z
zebra striping, 172–176

CREDITS 301

Credits

F I G U R E S

F I G U R E 1.1 www.w3.org

F I G U R E S 1. 3 – 1.7 www.hsrc.unc.edu

F I G U R E S 1. 8 and 1.9 www.twitter.com

F I G U R E 2 . 8 www.digitalmediaminute.com/reference/entity

F I G U R E 2 . 2 6 www.useragentman.com/IETransformsTranslator

F I G U R E S 3 . 2 7 and 3 . 2 8 www.fontsquirrel.com

F I G U R E 5 . 8 http://en.wikipedia.org

F I G U R E 7. 2 3 www.cssstickyfooter.com

R E S O U R C E S I N T H E E X E R C I S E F I L E S

The water stain images used in the exercise files for Chapters 3, 4,
and 5 were created with Photoshop brushes by Obsidian Dawn
(www.obsidiandawn.com/water-stains-photoshop-gimp-brushes).

The Prelude font provided in the exercise files for Chapters 3, 4,
and 5 is from Font Squirrel (www.fontsquirrel.com).

The icons provided in the exercise files for Chapters 4 and 5 are
part of the famfamfam Silk icon set designed by Mark James
(www.famfamfam.com/lab/icons/silk).

The Modernizr script (modernizr-1.6.min.js) provided in the
exercise files for Chapter 5 was created by Faruk Ates� and
Paul Irish (www.modernizr.com).

The css3-mediaqueries-js script (css3-mediaqueries.js) provided in
the exercise files for Chapter 6 was created by Wouter van der Graaf
(http://code.google.com/p/css3-mediaqueries-js).

The illustrations used in the exercise pages for Chapters 6 and 7 are
part of the Yummy icon set designed by Icon Eden (www.iconeden.
com/icon/yummy-free-icons.html).

The Nadia Serif font provided in the exercise files for Chapters 6 and 7
is from Kernest (www.kernest.com).

My thanks to all of the developers and designers who created these assets and
allowed me to use them in this book.

www.w3.org
www.hsrc.unc.edu
www.twitter.com
www.digitalmediaminute.com/reference/entity
www.useragentman.com/IETransformsTranslator
www.fontsquirrel.com
http://en.wikipedia.org
www.cssstickyfooter.com
www.obsidiandawn.com/water-stains-photoshop-gimp-brushes
www.fontsquirrel.com
www.famfamfam.com/lab/icons/silk
www.modernizr.com
http://code.google.com/p/css3-mediaqueries-js
www.iconeden.com/icon/yummy-free-icons.html
www.iconeden.com/icon/yummy-free-icons.html
www.kernest.com

	Table of Contents
	Introduction
	CHAPTER 1 The CSS3 Lowdown
	What is CSS3?
	Overview of What’s New
	Where CSS3 Stands
	Use CSS3 Now

	The State of Browser Support
	Browser Market Share
	How the Major Players Stack Up

	Progressive Enhancement
	Advantages
	Let Me Put it This Way...

	Benefits of CSS3
	Reduced Development and Maintenance Time
	Increased Page Performance

	Better Search Engine Placement
	Increased Usability and Accessibility
	Staying at the Front of the Pack

	Case Study: The Highway Safety Research Center
	Before CSS3
	After CSS3

	Using CSS3 Wisely
	Browser Prefixes
	Dealing with Non-supporting Browsers
	Filtering IE with Conditional Comments

	Dealing with Unsupportive Clients or Bosses
	Don’t Tell Them Everything
	Educate Them About Progressive Enhancement Up Front
	Manage Expectations from Design Mockups

	CHAPTER 2 Speech Bubbles
	The Base Page
	Corralling Long Text
	Graphic Effects Sans Graphics
	Rounding the Corners
	Adding the Bubble’s Tail
	Semitransparent Backgrounds with RGBA or HSLA
	Image-free Gradients
	Image-free Drop Shadows
	Image-free Text Shadows

	Transforming the Avatars
	What are Transforms?
	Rotating the Avatars

	The Finished Page

	CHAPTER 3 Notebook Paper
	The Base Page
	Beyond the Basic Background
	Scaling the Background Image
	Multiple Background Images on One Element
	Adding a Graphic Border
	Adding a Drop Shadow

	Embedding Unique Fonts
	What is @font-face?
	Choosing Acceptable Fonts
	Browser Support
	Converting Fonts
	Using @font-face

	The Finished Page

	CHAPTER 4 Styling Images and Links by Type
	The Base Page
	What are Attribute Selectors?
	Indicating File Types with Dynamically Added Icons
	Alternative Icon Ideas
	Fixing IE 6

	Styling Full-size Photos and Thumbnails Differently
	The Trouble with Classes
	Using Attribute Selectors to Target by Type

	The Finished Page

	CHAPTER 5 Improving Efficiency Using Pseudo-classes
	Targeting Specific Elements Without Using IDs or Classes
	New Structural Pseudo-classes
	Back to the Speech Bubbles: Alternating Colors
	Back to the Photos: Random Rotation

	Dynamically Highlighting Page Sections
	The :target Pseudo-class
	Adding the Table of Contents
	Changing Background Color on the Jumped-to Section
	Animating the Change with Pure CSS

	CHAPTER 6 Different Screen Size, Different Design
	The Base Page
	What are Media Queries?
	Changing the Layout for Large Screens
	From Horizontal Nav Bar to Vertical Menu
	Multi-column Text

	Changing the Layout for Small Screens
	Changing the Layout for Mobile Devices
	What is Device Width?
	The Third Media Query
	Improving the Look on High-resolution Displays
	The Viewport meta Tag

	Workarounds for Non-supporting Browsers
	The Finished Page

	CHAPTER 7 Flexing Your Layout Muscles
	Changes on the Horizon
	Creating Multi-column Layouts Without Floats or Positioning
	Making Blocks Flex
	Adding Columns
	Reordering Columns
	Equal-height Columns
	Vertical and Horizontal Centering

	Reality Check: What Works Now
	Flexible Form Layout
	Sticky Footers

	Alternatives to the Flexible Box Model
	The box-sizing Property
	Future Layout Systems

	APPENDIX A: Browser Support
	Conclusion
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Credits

